DEFORMATION THEORY OF ONE-DIMENSIONAL SYSTEMS

被引:0
作者
Smania, Daniel [1 ]
机构
[1] Univ Sao Paulo, Dept Matemat, Inst Ciencias Matemat & Computacao, ICMC, Ave Trabalhador Sao Carlense,400 Ctr, BR-13566590 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Topological classes; ergodic theory; Birkhoff sums; deformation; LINEAR-RESPONSE; SMOOTH DEFORMATIONS; CIRCLE; DYNAMICS; ANOSOV; MAPS; RENORMALIZATION; HOMEOMORPHISMS; UNIVERSALITY; CONJUGACY;
D O I
10.3934/jmd.2025001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We discuss a remarkable phenomenon which occurs in one-dimensional dynamics, that is, for maps acting on an interval or a circle. Such maps are often not structurally stable, however their topological class is an infinite dimensional smooth manifold with finite codimension. Consequently, the deformation theory of such systems is quite rich. Recent developments suggest that the study of the existence, uniqueness and regularity of solutions for certain cohomological equations is crucial for deeper understanding of these phenomena, and ergodic theory plays an important role in this study.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 61 条
[11]   The pressure metric for Anosov representations [J].
Bridgeman, Martin ;
Canary, Richard ;
Labourie, Francois ;
Sambarino, Andres .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2015, 25 (04) :1089-1179
[12]  
Clark T, 2023, Arxiv, DOI arXiv:2304.00883
[13]   Renormalization for piecewise smooth homeomorphisms on the circle [J].
Cunha, Kleyber ;
Smania, Daniel .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (03) :441-462
[14]  
de Faria E., 2008, MATH TOOLS ONE DIMEN
[15]   Automorphic measures and invariant distributions for circle dynamics [J].
de Faria, Edson ;
Guarino, Pablo ;
Nussenzveig, Bruno .
MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (02)
[16]   Quasisymmetric orbit-flexibility of multicritical circle maps [J].
De Faria, Edson ;
Guarino, Pablo .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (11) :3271-3310
[17]   Central limit theorem for generalized Weierstrass functions [J].
de Lima, Amanda ;
Smania, Daniel .
STOCHASTICS AND DYNAMICS, 2019, 19 (01)
[18]   INVARIANTS FOR SMOOTH CONJUGACY OF HYPERBOLIC DYNAMIC-SYSTEMS .2. [J].
DELALLAVE, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (03) :369-378
[19]  
DOUADY A, 1985, ANN SCI ECOLE NORM S, V18, P287
[20]   Beau bounds for multicritical circle maps [J].
Estevez, Gabriela ;
de Faria, Edson ;
Guarino, Pablo .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (03) :842-859