DEFORMATION THEORY OF ONE-DIMENSIONAL SYSTEMS

被引:0
作者
Smania, Daniel [1 ]
机构
[1] Univ Sao Paulo, Dept Matemat, Inst Ciencias Matemat & Computacao, ICMC, Ave Trabalhador Sao Carlense,400 Ctr, BR-13566590 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Topological classes; ergodic theory; Birkhoff sums; deformation; LINEAR-RESPONSE; SMOOTH DEFORMATIONS; CIRCLE; DYNAMICS; ANOSOV; MAPS; RENORMALIZATION; HOMEOMORPHISMS; UNIVERSALITY; CONJUGACY;
D O I
10.3934/jmd.2025001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We discuss a remarkable phenomenon which occurs in one-dimensional dynamics, that is, for maps acting on an interval or a circle. Such maps are often not structurally stable, however their topological class is an infinite dimensional smooth manifold with finite codimension. Consequently, the deformation theory of such systems is quite rich. Recent developments suggest that the study of the existence, uniqueness and regularity of solutions for certain cohomological equations is crucial for deeper understanding of these phenomena, and ergodic theory plays an important role in this study.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 61 条
[1]   GEODESIC-FLOWS, INTERVAL MAPS, AND SYMBOLIC DYNAMICS [J].
ADLER, R ;
FLATTO, L .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 25 (02) :229-334
[2]  
Arnold V. I., 1961, Akad. Nauk SSSR Ser. Mat, V25, P21
[3]   Regular or stochastic dynamics in real analytic families of unimodal maps [J].
Avila, A ;
Lyubich, M ;
de Melo, W .
INVENTIONES MATHEMATICAE, 2003, 154 (03) :451-550
[4]   The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes [J].
Avila, Artur ;
Lyubich, Mikhail .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2011, (114) :171-223
[5]   COHOMOLOGICAL EQUATIONS AND INVARIANT DISTRIBUTIONS FOR MINIMAL CIRCLE DIFFEOMORPHISMS [J].
Avila, Artur ;
Kocsard, Alejandro .
DUKE MATHEMATICAL JOURNAL, 2011, 158 (03) :501-536
[6]   SMOOTH DEFORMATIONS OF PIECEWISE EXPANDING UNIMODAL MAPS [J].
Baladi, Viviane ;
Smania, Daniel .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (03) :685-703
[7]   Linear response formula for piecewise expanding unimodal maps [J].
Baladi, Viviane ;
Smania, Daniel .
NONLINEARITY, 2008, 21 (04) :677-711
[8]  
Baladi V, 2012, ANN SCI ECOLE NORM S, V45, P861
[9]   Rigidity for piecewise smooth circle homeomorphisms and certain GIETs [J].
Berk, Przemyslaw ;
Trujillo, Frank .
ADVANCES IN MATHEMATICS, 2024, 441
[10]  
Bowen R., 1979, Inst. Hautes Etudes Sci. Publ. Math., V50, P153