Deep Holes of Twisted Reed-Solomon Codes

被引:2
作者
Fang, Weijun [1 ]
Xu, Jingke [2 ]
机构
[1] Shandong Univ, Sch Cyber Sci & Technol, Qingdao, Peoples R China
[2] Shandong Agr Univ, Sch Informat Sci & Engn, Tai An, Shandong, Peoples R China
来源
2024 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, ISIT 2024 | 2024年
基金
中国国家自然科学基金;
关键词
COVERING RADIUS; MDS EXTENSIONS;
D O I
10.1109/ISIT57864.2024.10619676
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The deep holes of a linear code are the vectors achieving maximum error distance to the code. There has been a lot of work on the deep holes of Reed-Solomon codes. In this paper, we consider the deep holes of a class of twisted Reed-Solomon codes. The covering radius and a standard class of deep holes of twisted Reed-Solomon codes TRSk(A, eta) are obtained for a general evaluation set A subset of F-q. Furthermore, when q = 2(m) >= 8, we prove that there are no other deep holes of the full-length twisted Reed-Solomon codes TRSk(F-q, eta) for 3/4 q - 1 <= k q - 4, and we also completely determine their deep holes for q - 3 <= k <= q - 1.
引用
收藏
页码:488 / 493
页数:6
相关论文
共 31 条
[1]   Twisted Reed-Solomon Codes [J].
Beelen, Peter ;
Puchinger, Sven ;
Rosenkilde, Johan .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) :3047-3061
[2]  
Beelen P, 2018, IEEE INT SYMP INFO, P946, DOI 10.1109/ISIT.2018.8437923
[3]  
Beelen P, 2017, IEEE INT SYMP INFO, P336, DOI 10.1109/ISIT.2017.8006545
[4]   SINGULARITIES OF SYMMETRIC HYPERSURFACES AND REED SOLOMON CODES [J].
Cafure, Antonio ;
Matera, Guillermo ;
Privitelli, Melina .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2012, 6 (01) :69-94
[5]  
Cheng Q, 2007, LECT NOTES COMPUT SC, V4484, P296
[6]   ON THE COVERING RADIUS OF REED-SOLOMON CODES [J].
DUR, A .
DISCRETE MATHEMATICS, 1994, 126 (1-3) :99-105
[7]  
Guizhen Zhu, 2012, Theory and Applications of Models of Computation. Proceedings 9th Annual Conference, TAMC 2012, P214, DOI 10.1007/978-3-642-29952-0_24
[8]   Maximum-likelihood decoding of Reed-Solomon codes is NP-hard [J].
Guruswami, V ;
Vardy, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (07) :2249-2256
[9]  
Hiren D., 2019, The MDS Conjecture and related questions in finite geometry
[10]   A random linear network coding approach to multicast [J].
Ho, Tracey ;
Medard, Muriel ;
Koetter, Ralf ;
Karger, David R. ;
Effros, Michelle ;
Shi, Jun ;
Leong, Ben .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (10) :4413-4430