Holographic nature of critical quantum states of proteins

被引:0
作者
Papp, Eszter [1 ]
Vattay, Gabor [1 ]
机构
[1] Eotvos Lorand Univ, Inst Phys & Astron, Dept Phys Complex Syst, Egyet Ter 1-3, H-1053 Budapest, Hungary
关键词
Anderson metal-insulator transition; Protein electron transport; Extended H & uuml; ckel method; Critical quantum states; Multifractality; ELECTRON-TRANSPORT; BRAIN MICROTUBULES; DIMENSIONS; MECHANISM; SYSTEMS; MODEL;
D O I
10.1016/j.csbj.2025.05.049
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Anderson metal-insulator transition is a fundamental phenomenon in condensed matter physics, describing the transition from a conducting (metallic) to a non-conducting (insulating) state driven by disorder in a material. At the critical point of the Anderson transition, wave functions exhibit multifractal behavior, and energy levels display a universal distribution, indicating non-trivial correlations in the eigenstates. Recent studies have shown that proteins, traditionally considered insulators, exhibit much higher conductivity than previously assumed. In this paper, we investigate several proteins known for their efficient electron transport properties. We compare their energy level statistics, eigenfunction correlation, and electron return probability to those expected in metallic, insulating, or critical states. Remarkably, these proteins exhibit properties of critically disordered metals in their natural state without any parameter adjustment. Their composition and geometry are self-organized into the critical state of the Anderson transition, and their fractal properties are universal and unique among critical systems. Our findings suggest that proteins' wave functions may fulfill "holographic" area laws, since their correlation fractal dimension is d2 approximate to 2.
引用
收藏
页码:59 / 63
页数:5
相关论文
共 36 条
[1]  
Al'tshuler B. L., 1988, Soviet Physics - JETP, V67, P625
[2]   Electronic Transport via Proteins [J].
Amdursky, Nadav ;
Marchak, Debora ;
Sepunaru, Lior ;
Pecht, Israel ;
Sheves, Mordechai ;
Cahen, David .
ADVANCED MATERIALS, 2014, 26 (42) :7142-7161
[3]   Solid-state electron transport via cytochrome c depends on electronic coupling to electrodes and across the protein [J].
Amdursky, Nadav ;
Ferber, Doron ;
Bortolotti, Carlo Augusto ;
Dolgikh, Dmitry A. ;
Chertkova, Rita V. ;
Pecht, Israel ;
Sheves, Mordechai ;
Cahen, David .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (15) :5556-5561
[4]   Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Roux, G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[5]   Near-Temperature-Independent Electron Transport Well beyond Expected Quantum Tunneling Range via Bacteriorhodopsin Multilayers [J].
Bera, Sudipta ;
Fereiro, Jerry A. ;
Saxena, Shailendra K. ;
Chryssikos, Domenikos ;
Majhi, Koushik ;
Bendikov, Tatyana ;
Sepunaru, Lior ;
Ehre, David ;
Tornow, Marc ;
Pecht, Israel ;
Vilan, Ayelet ;
Sheves, Mordechai ;
Cahen, David .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (45) :24820-24835
[6]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[7]   Protein bioelectronics: a review of what we do and do not know [J].
Bostick, Christopher D. ;
Mukhopadhyay, Sabyasachi ;
Pecht, Israel ;
Sheves, Mordechai ;
Cahen, David ;
Lederman, David .
REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (02)
[8]  
Brandes T, 1996, ANN PHYS-LEIPZIG, V5, P633
[9]   Enhancement of the Critical Temperature of Superconductors by Anderson Localization [J].
Burmistrov, I. S. ;
Gornyi, I. V. ;
Mirlin, A. D. .
PHYSICAL REVIEW LETTERS, 2012, 108 (01)
[10]   MULTIFRACTAL WAVE-FUNCTION AT THE LOCALIZATION THRESHOLD [J].
CASTELLANI, C ;
PELITI, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (08) :L429-L432