A SINGULAR BOUNDARY VALUE PROBLEM FOR THE NORMALIZED p-LAPLACIAN EQUATION

被引:0
作者
Liu, Fang [1 ]
Sun, Hong [1 ]
机构
[1] SMALL
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 1600年 / 0卷 / 01期
关键词
Singular boundary value problem; normalized p-Laplacian; viscosity solution; comparison principle; existence; TUG-OF-WAR; MINIMIZATION PROBLEMS; LIPSCHITZ EXTENSIONS; POSITIVE SOLUTIONS; MAXIMUM PRINCIPLE; 1ST EIGENVALUE; INFINITY; UNIQUENESS;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the singular boundary value problem related to the normalized p-Laplacian {Delta(N)(p)u=lambda f(x,u,Du) in Omega, u>0 in Omega, u=0 on partial derivative Omega, where lambda>0 is a parameter and Delta(N)(p)u=1p|Du|2-pdiv(|D-u|(p-2)Du),1<p R is continuous and may exhibit singularity at t -> 0+. First, we establish the comparison principle by the perturbation method for the viscosity solution to the general equation Delta(N)(p)u=F(x,u,Du) under some conditions on the term F(x,t,q). When 2 <= n<pNovabeads: Stimuli-Responsive Signal-Amplifying Hydrogel Microparticles for Enzymeless Fluorescence-Based Detection of microRNA Biomarkers
引用
收藏
页码:1613-6810 / 1613-6829
相关论文
empty
未找到相关数据