A Large-scale Multimodal Study for Predicting Mortality Risk Using Minimal and Low Parameter Models and Separable Risk Assessment

被引:0
作者
Cerna, Alvaro Emilio Ulloa [1 ,2 ]
vanMaanen, David P. [1 ]
Jing, Linyuan [1 ]
Stough, Joshua V. [1 ]
Patel, Aalpen [1 ]
Haggerty, Christopher M. [1 ]
Fornwalt, Brandon K. [1 ]
Pattichis, Marios [2 ]
机构
[1] Geisinger, Dept Translat Data Sci & Informat, Danville, PA 17822 USA
[2] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
关键词
Echocardiography; Videos; Mortality; Electrocardiography; Predictive models; Biological system modeling; Data models; Biomedical measurement; Bioinformatics; Mathematical models; Large-scale electronic health records dataset; low-parameter models; separable models; deep learning; machine learning; artificial intelligence; IMPUTATION;
D O I
10.1109/jbhi.2025.3529320; 10.1109/JBHI.2025.3529320
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The majority of biomedical studies use limited datasets that may not generalize over large heterogeneous datasets that have been collected over several decades. The current paper develops and validates several multimodal models that can predict 1-year mortality based on a massive clinical dataset. Our focus on predicting 1-year mortality can provide a sense of urgency to the patients. Using the largest dataset of its kind, the paper considers the development and validation of multimodal models based on 25,137,015 videos associated with 699,822 echocardiography studies from 316,125 patients, and 2,922,990 8-lead electrocardiogram (ECG) traces from 631,353 patients. Our models allow us to assess the contribution of individual factors and modalities to the overall risk. Our approach allows us to develop extremely low-parameter models that use optimized feature selection based on feature importance. Based on available clinical information, we construct a family of models that are made available in the DISIML package. Overall, performance ranges from an AUC of 0.72 with just ten parameters to an AUC of 0.89 with under 105 k for the full multimodal model. The proposed approach represents a modular neural network framework that can provide insights into global risk trends and guide therapies for reducing mortality risk.
引用
收藏
页码:3762 / 3771
页数:10
相关论文
共 24 条
[1]   Use of Risk Models to Predict Death in the Next Year Among Individual Ambulatory Patients With Heart Failure [J].
Allen, Larry A. ;
Matlock, Daniel D. ;
Shetterly, Susan M. ;
Xu, Stanley ;
Levy, Wayne C. ;
Portalupi, Laura B. ;
McIlvennan, Colleen K. ;
Gurwitz, Jerry H. ;
Johnson, Eric S. ;
Smith, David H. ;
Magid, David J. .
JAMA CARDIOLOGY, 2017, 2 (04) :435-441
[2]   Clinical Validity, Understandability, and Actionability of Online Cardiovascular Disease Risk Calculators: Systematic Review [J].
Bonner, Carissa ;
Fajardo, Michael Anthony ;
Hui, Samuel ;
Stubbs, Renee ;
Trevena, Lyndal .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2018, 20 (02)
[3]  
Cerna A. Ulloa, 2022, DISIML: Deep learning library for tabular, series, and video data
[4]   High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning [J].
Duffy, Grant ;
Cheng, Paul P. ;
Yuan, Neal ;
He, Bryan ;
Kwan, Alan C. ;
Shun-Shin, Matthew J. ;
Alexander, Kevin M. ;
Ebinger, Joseph ;
Lungren, Matthew P. ;
Rader, Florian ;
Liang, David H. ;
Schnittger, Ingela ;
Ashley, Euan A. ;
Zou, James Y. ;
Patel, Jignesh ;
Witteles, Ronald ;
Cheng, Susan ;
Ouyang, David .
JAMA CARDIOLOGY, 2022, 7 (04) :386-395
[5]   Impact of imputation of missing values on classification error for discrete data [J].
Farhangfar, Alireza ;
Kurgan, Lukasz ;
Dy, Jennifer .
PATTERN RECOGNITION, 2008, 41 (12) :3692-3705
[6]   European Randomised Study of Screening for Prostate Cancer (ERSPC) risk calculators significantly outperform the Prostate Cancer Prevention Trial (PCPT) 2.0 in the prediction of prostate cancer: a multi-institutional study [J].
Foley, Robert W. ;
Maweni, Robert M. ;
Gorman, Laura ;
Murphy, Keefe ;
Lundon, Dara J. ;
Durkan, Garrett ;
Power, Richard ;
O'Brien, Frank ;
O'Malley, Kieran J. ;
Galvin, David J. ;
Murphy, T. Brendan ;
Watson, R. William .
BJU INTERNATIONAL, 2016, 118 (05) :706-713
[7]   American Joint Committee on Cancer acceptance criteria for inclusion of risk models for individualized prognosis in the practice of precision medicine [J].
Kattan, Michael W. ;
Hess, Kenneth R. ;
Amin, Mahul B. ;
Lu, Ying ;
Moons, Karl G. M. ;
Gershenwald, Jeffrey E. ;
Gimotty, Phyllis A. ;
Guinney, Justin H. ;
Halabi, Susan ;
Lazar, Alexander J. ;
Mahar, Alyson L. ;
Patel, Tushar ;
Sargent, Daniel J. ;
Weiser, Martin R. ;
Compton, Carolyn .
CA-A CANCER JOURNAL FOR CLINICIANS, 2016, 66 (05) :370-374
[8]  
Kingma D.P., ICLR 2015
[9]   The Seattle heart failure model - Prediction of survival in heart failure [J].
Levy, WC ;
Mozaffarian, D ;
Linker, DT ;
Sutradhar, SC ;
Anker, SD ;
Cropp, AB ;
Anand, I ;
Maggioni, A ;
Burton, P ;
Sullivan, MD ;
Pitt, B ;
Poole-Wilson, PA ;
Mann, DL ;
Packer, M .
CIRCULATION, 2006, 113 (11) :1424-1433
[10]   Video-based AI for beat-to-beat assessment of cardiac function [J].
Ouyang, David ;
He, Bryan ;
Ghorbani, Amirata ;
Yuan, Neal ;
Ebinger, Joseph ;
Langlotz, Curtis P. ;
Heidenreich, Paul A. ;
Harrington, Robert A. ;
Liang, David H. ;
Ashley, Euan A. ;
Zou, James Y. .
NATURE, 2020, 580 (7802) :252-+