Enhancing the Performances of Lithium Batteries through Functionalization of Porous Polyolefin Separators with Cross-Linked Single-Ion Polymer Electrolytes

被引:0
作者
Vinci, Valentin [1 ]
Flachard, Dimitri [1 ,2 ]
Henke, Helena [2 ]
Bouchet, Renaud [1 ]
Drockenmuller, Eric [2 ]
机构
[1] Univ Grenoble Alpes, Univ Savoie Mont Blanc, F-38000 Grenoble, France
[2] Univ Claude Bernard Lyon 1, F-69622 Villeurbanne, France
关键词
lithium-ion batteries; porous polyolefin separators; single-ion polymer electrolytes; cross-linking; surface functionalization; POLYPROPYLENE SEPARATORS; POLYETHYLENE SEPARATORS; ELECTROCHEMICAL PERFORMANCES; CONDUCTIVITY; DENDRITES; STABILITY; MEMBRANE;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium-ion batteries (LiBs) require advanced separators to meet the growing demands of high energy density, safety, and durability. However, conventional polyolefin separators often suffer from poor electrolyte wettability and limited ionic conductivity, hindering the overall battery performance. This study presents a scalable approach for the surface functionalization of porous polyolefin separators using single-ion statistical copolymers bearing lithium sulfonate or lithium trifluoromethanesulfonamidosulfonyl groups. These copolymers are deposited via a wet coating process followed by UV cross-linking, achieving durable and uniform functionalization without compromising the separator's porous structure. The functionalized separators exhibit significantly enhanced wettability, electrolyte uptake, and effective ionic conductivity. Electrochemical performance tests of LiBs reveal stable interfacial resistance, improved cycle life, and better rate capabilities owing to the effectiveness of the covalently bonded ionic groups in promoting selective lithium-ion transport. This approach combines simplicity, scalability, and robust chemical stability, offering a promising solution for next-generation LiBs by addressing the key limitations of commercial separators.
引用
收藏
页码:25742 / 25753
页数:12
相关论文
共 61 条
[1]   Design of crosslinked hybrid multilayer thin films from azido-functionalized polystyrenes and platinum nanoparticles [J].
Al Akhrass, Samer ;
Gal, Francois ;
Damiron, Denis ;
Alcouffe, Pierre ;
Hawker, Craig J. ;
Cousin, Fabrice ;
Carrot, Geraldine ;
Drockenmuller, Eric .
SOFT MATTER, 2009, 5 (03) :586-592
[2]   Two in one: use of azide functionality for controlled photo-crosslinking and click-modification of polymer microspheres [J].
Albuszis, Marco ;
Roth, Peter J. ;
Pauer, Werner ;
Moritz, Hans-Ulrich .
POLYMER CHEMISTRY, 2016, 7 (34) :5414-5425
[3]   Battery separators [J].
Arora, P ;
Zhang, ZM .
CHEMICAL REVIEWS, 2004, 104 (10) :4419-4462
[4]   Recent progress of composite polyethylene separators for lithium/ sodium batteries [J].
Babiker, Dafaalla M. D. ;
Usha, Zubaida Rukhsana ;
Wan, Caixia ;
Hassaan, Mohmmed Mun ELseed ;
Chen, Xin ;
Li, Liangbin .
JOURNAL OF POWER SOURCES, 2023, 564
[5]   The Development and Future of Lithium Ion Batteries [J].
Blomgren, George E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (01) :A5019-A5025
[6]   In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (12) :4393-4400
[8]   Perspectives on Improving the Safety and Sustainability of High Voltage Lithium-Ion Batteries Through the Electrolyte and Separator Region [J].
Cavers, Heather ;
Molaiyan, Palanivel ;
Abdollahifar, Mozaffar ;
Lassi, Ulla ;
Kwade, Arno .
ADVANCED ENERGY MATERIALS, 2022, 12 (23)
[9]   Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery [J].
Chen, Wenju ;
Shi, Liyi ;
Wang, Zhuyi ;
Zhu, Jiefang ;
Yang, Haijun ;
Mao, Xufeng ;
Chi, Mingming ;
Sun, Lining ;
Yuan, Shuai .
CARBOHYDRATE POLYMERS, 2016, 147 :517-524
[10]   Separators for Lithium-Ion Batteries: A Review on the Production Processes and Recent Developments [J].
Deimede, Valadoula ;
Elmasides, Costas .
ENERGY TECHNOLOGY, 2015, 3 (05) :453-468