Uniform bounds on S-integral torsion points for Gm and elliptic curves

被引:0
作者
Yap, Jit Wu [1 ]
机构
[1] Harvard Univ, Math, 1 Oxford St, Cambridge, MA 02138 USA
关键词
Integral points; elliptic curves; equidistribution; linear forms in logarithms; FINITENESS PROPERTY; PREPERIODIC POINTS; LINEAR-FORMS; SMALL HEIGHT; EQUIDISTRIBUTION;
D O I
10.1142/S1793042125500812
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a number field, S a finite set of places. For Gm or an elliptic curve E defined over K, we establish uniformity results on the number of S-integral torsion points relative to a non-torsion point beta, as beta varies over number fields of bounded degree. In particular for Gm, if D is a positive integer, we prove a uniform bound on the degree of a torsion point zeta that is S-integral relative to a non-torsion point beta with degree <= D.
引用
收藏
页码:1609 / 1639
页数:31
相关论文
共 30 条
[1]  
Ably M., 2003, C R MATH ACAD SCI PA, V337, P629, DOI DOI 10.1016/J.CRMA.2003.09.018
[2]  
Baker A., 1975, TRANSCENDENTAL NUMBE, px+147
[3]  
Baker M, 2005, INT MATH RES NOTICES, V2005, P3791
[4]   A finiteness property of torsion points [J].
Baker, Matthew ;
Ih, Su-ion ;
Rumely, Robert .
ALGEBRA & NUMBER THEORY, 2008, 2 (02) :217-248
[5]  
Baker Matthew, 2010, Mathematical Surveys and Monographs, V159, DOI DOI 10.1090/SURV/159
[6]   Equidistribution of small points, rational dynamics, and potential theory [J].
Baker, Matthew H. ;
Rumely, Robert .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (03) :625-688
[7]  
Benedetto Robert L., 2019, Graduate Studies in Mathematics, V198, DOI [10.1090/gsm/198, DOI 10.1090/GSM/198]
[8]   Limit distribution of small points on algebraic tori [J].
Bilu, Y .
DUKE MATHEMATICAL JOURNAL, 1997, 89 (03) :465-476
[9]   Measures and equidistribution on Berkovich spaces [J].
Chambert-Loir, Antoine .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 595 :215-235
[10]  
David S., 2002, RECENT PROGR LINEAR, P26, DOI [10.1017/CBO9780511542961.004, DOI 10.1017/CBO9780511542961.004]