Characterizing Baer modules over τq-semisimple rings: An extension of Baer's problem

被引:0
作者
Zhang, Xiaolei [1 ,2 ]
Kim, Hwankoo [3 ]
机构
[1] Tianshui Normal Univ, Sch Math & Stat, Tianshui 741001, Peoples R China
[2] Shandong Univ Technol, Sch Math & Stat, Zibo 255000, Peoples R China
[3] Hoseo Univ, Div Comp Engn, Asan, South Korea
基金
新加坡国家研究基金会;
关键词
Baer splitting problem; Baer module; tau(q)-semisimple ring;
D O I
10.1142/S0219498826502038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we investigate the Baer splitting problem over commutative rings. In particular, we show that if a commutative ring R is tau(q)-semisimple, then every Baer R-module is projective.
引用
收藏
页数:10
相关论文
共 17 条
[1]  
Angeleri Hugel L, 2008, T AM MATH SOC, V360, P2409
[2]   The subgroup of the elements of finite order of an Abelian group [J].
Baer, R .
ANNALS OF MATHEMATICS, 1936, 37 :766-781
[3]   BAER MODULES OVER DOMAINS [J].
EKLOF, PC ;
FUCHS, L ;
SHELAH, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 322 (02) :547-560
[4]   BAER MODULES OVER VALUATION DOMAINS [J].
EKLOF, PC ;
FUCHS, L .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 150 :363-373
[5]  
FUCHS L, 2001, MODULES NONNOETHERIA
[6]   Covers and envelopes related to divisibility [J].
Fuchs, Laszlo .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (03)
[7]  
Gobel R., 2012, DEGRUYTER EXPOSITION, V41
[8]  
Golan J. S., 1986, Pitman Monographs and Surveys in Pure and Applied Mathematics, V29
[9]  
Kaplansky I, 1962, Arch. Math., V13, P341
[10]   THE MINIMAL PRIME SPECTRUM OF A REDUCED RING [J].
MATLIS, E .
ILLINOIS JOURNAL OF MATHEMATICS, 1983, 27 (03) :353-391