Prediction of metastatic risk of renal clear cell carcinoma based on CT radiomics analysis

被引:0
作者
Wang, Xueyi [1 ]
Yang, Youchang [2 ]
Wu, Jiaojiao [3 ]
Tang, Xiaoqiang [4 ]
Wang, Yao [1 ]
机构
[1] Xuzhou Med Univ, Jiangsu Univ 2, Wujin Hosp, Wujin Clin Coll,Dept Radiol, Changzhou, Peoples R China
[2] Shandong Univ, Qilu Hosp Qingdao, Cheeloo Coll Med, Dept Radiol, Qingdao, Peoples R China
[3] Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai, Peoples R China
[4] Nanjing Med Univ, Affiliated Changzhou 2 Peoples Hosp, Dept Radiol, Changzhou, Peoples R China
关键词
clear cell renal cell carcinoma; CT; predicted; radiomics; metastasis; CANCER; GRADE; SIZE;
D O I
10.3389/fonc.2025.1576956
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objective To investigate the value of using imaging histological models to non-invasively assess the risk of metastasis in patients with clear cell renal cell carcinoma (ccRCC).Methods This study retrospectively enrolled 273 clear cell renal cell carcinoma (ccRCC) patients from three hospitals, with 57 cases allocated as an independent test cohort. High-throughput imaging histomic features (n=2,264) were extracted from triphasic CT (non-enhanced, corticomedullary, and nephrographic phases) using Pyradiomics. Three monophasic radiomics models were developed following dimensionality reduction, with feature contributions quantified via Shapley Additive exPlanations (SHAP) framework to enhance interpretability. A triphasic radiomics model was subsequently established by ensembling phase-specific prediction probabilities. Metastasis risk factors identified through univariate/multivariate logistic regression informed a clinical predictor model. The final combined model integrated triphasic radiomics signatures with clinical parameters, visualized through a nomogram. Diagnostic performance was evaluated via ROC analysis, while calibration curves validated prediction consistency.Results In this study, SHAP analysis revealed that radiomics features quantifying intratumoral heterogeneity (e.g., necrosis patterns in medullary-phase CT) synergized with clinical factors (tumor size >3 cm, creatinine levels) to drive predictions. Key biological insights included threshold effects of necrosis volume (linked to hypoxia) and tumor diameter (critical threshold: 3 cm), aligning with known metastatic pathways. The clinical model achieved an area under the ROC curve (AUROC) of 0.752 (95% confidence interval [CI]: 0.679-0.826) in the training dataset and 0.681 (95% CI: 0.529-0.833) in the testing dataset. Among the single-phase radiomics models, the CT_Medullary model demonstrated good prediction performance, with an AUROC of 0.785 (95% CI: 0.645-0.924) in the testing dataset. The three-phased CT model exhibited improved diagnostic performance, with a testing AUROC rising to 0.812 (95% CI: 0.680-0.943). Notably, the combined model integrating clinical and radiomics features yielded the best prediction, achieving a further improvement in testing AUROC to 0.824 (95% CI: 0.704-0.944).Conclusion Radiomics technology provides a quantitative, objective method for predicting the risk of metastasis in patients with ccRCC. Nonetheless, the clinical indicators persist as irreplaceable.
引用
收藏
页数:13
相关论文
共 28 条
[1]   MRI radiomics-based nomogram for individualised prediction of synchronous distant metastasis in patients with clear cell renal cell carcinoma [J].
Bai, Xu ;
Huang, Qingbo ;
Zuo, Panli ;
Zhang, Xiaojing ;
Yuan, Jing ;
Zhang, Xu ;
Wang, Meifeng ;
Xu, Wei ;
Ye, Huiyi ;
Zhao, Jinkun ;
Sun, Haoran ;
Shao, Bin ;
Wang, Haiyi .
EUROPEAN RADIOLOGY, 2021, 31 (02) :1029-1042
[2]   Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer [J].
Boehm, Kevin M. ;
Aherne, Emily A. ;
Ellenson, Lora ;
Nikolovski, Ines ;
Alghamdi, Mohammed ;
Vazquez-Garcia, Ignacio ;
Zamarin, Dmitriy ;
Roche, Kara Long ;
Liu, Ying ;
Patel, Druv ;
Aukerman, Andrew ;
Pasha, Arfath ;
Rose, Doori ;
Selenica, Pier ;
Causa Andrieu, Pamela I. ;
Fong, Chris ;
Capanu, Marinela ;
Reis-Filho, Jorge S. ;
Vanguri, Rami ;
Veeraraghavan, Harini ;
Gangai, Natalie ;
Sosa, Ramon ;
Leung, Samantha ;
McPherson, Andrew ;
Gao, JianJiong ;
Lakhman, Yulia ;
Shah, Sohrab P. .
NATURE CANCER, 2022, 3 (06) :723-+
[3]   When to perform lymph node dissection in patients with renal cell carcinoma: a novel approach to the preoperative assessment of risk of lymph node invasion at surgery and of lymph node progression during follow-up [J].
Capitanio, Umberto ;
Abdollah, Firas ;
Matloob, Rayan ;
Suardi, Nazareno ;
Castiglione, Fabio ;
Di Trapani, Ettore ;
Capogrosso, Paolo ;
Gallina, Andrea ;
Dell'Oglio, Paolo ;
Briganti, Alberto ;
Salonia, Andrea ;
Montorsi, Francesco ;
Bertini, Roberto .
BJU INTERNATIONAL, 2013, 112 (02) :E59-E66
[4]   Identification of a Risk Stratification Model to Predict Overall Survival and Surgical Benefit in Clear Cell Renal Cell Carcinoma With Distant Metastasis [J].
Chen, Jiasheng ;
Cao, Nailong ;
Li, Shouchun ;
Wang, Ying .
FRONTIERS IN ONCOLOGY, 2021, 11
[5]   Development and validation of a novel MR imaging predictor of response to induction chemotherapy in locoregionally advanced nasopharyngeal cancer: a randomized controlled trial substudy (NCT01245959) [J].
Dong, Di ;
Zhang, Fan ;
Zhong, Lian-Zhen ;
Fang, Meng-Jie ;
Huang, Cheng-Long ;
Yao, Ji-Jin ;
Sun, Ying ;
Tian, Jie ;
Ma, Jun ;
Tang, Ling-Long .
BMC MEDICINE, 2019, 17 (01)
[6]   The 'Stage, Size, Grade and Necrosis' score is more accurate than the University of California Los Angeles Integrated Staging System for predicting cancer-specific survival in patients with clear cell renal cell carcinoma [J].
Ficarra, Vincenzo ;
Novara, Giacomo ;
Galfano, Antonio ;
Brunelli, Matteo ;
Cavalleri, Stefano ;
Martignoni, Guido ;
Artibani, Walter .
BJU INTERNATIONAL, 2009, 103 (02) :165-170
[7]   Patients with distant metastases from renal cell carcinoma can be accurately identified: external validation of a new nomogram [J].
Hutterer, Georg C. ;
Patard, Jean-Jacques ;
Jeldres, Claudio ;
Perrotte, Paul ;
de la Taille, Alexandre ;
Salomon, Laurent ;
Verhoest, Gregory ;
Tostain, Jacques ;
Cindolo, Luca ;
Ficarra, Vincenzo ;
Artibani, Walter ;
Schips, Luigi ;
Zigeuner, Richard ;
Mulders, Peter F. ;
Karakiewicz, Pierre I. .
BJU INTERNATIONAL, 2008, 101 (01) :39-43
[8]   Partial nephrectomy versus radical nephrectomy for clinical localised renal masses [J].
Kunath, Frank ;
Schmidt, Stefanie ;
Krabbe, Laura-Maria ;
Miernik, Arkadiusz ;
Dahm, Philipp ;
Cleves, Anne ;
Walther, Mario ;
Kroeger, Nils .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2017, (05)
[9]   Microcalcifications and Peritumoral Edema Predict Survival Outcome in Luminal Breast Cancer Treated with Neoadjuvant Chemotherapy [J].
Kwon, Bo Ra ;
Shin, Sung Ui ;
Kim, Soo-Yeon ;
Choi, Yunhee ;
Cho, Nariya ;
Kim, Sun Mi ;
Yi, Ann ;
Yun, Bo La ;
Jang, Mijung ;
Ha, Su Min ;
Lee, Su Hyun ;
Chang, Jung Min ;
Moon, Woo Kyung .
RADIOLOGY, 2022, 304 (02) :310-319
[10]   Radiomics: the bridge between medical imaging and personalized medicine [J].
Lambin, Philippe ;
Leijenaar, Ralph T. H. ;
Deist, Timo M. ;
Peerlings, Jurgen ;
de Jong, Evelyn E. C. ;
van Timmeren, Janita ;
Sanduleanu, Sebastian ;
Larue, Ruben T. H. M. ;
Even, Aniek J. G. ;
Jochems, Arthur ;
van Wijk, Yvonka ;
Woodruff, Henry ;
van Soest, Johan ;
Lustberg, Tim ;
Roelofs, Erik ;
van Elmpt, Wouter ;
Dekker, Andre ;
Mottaghy, Felix M. ;
Wildberger, Joachim E. ;
Walsh, Sean .
NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (12) :749-762