PHASE RETRIEVAL BY TENSOR TOTAL LEAST SQUARES

被引:0
作者
Liu, Jiani [1 ]
Zhu, Ce [1 ]
Chen, Yang [1 ]
Huang, Xiaolin [2 ]
Liu, Yipeng [1 ]
机构
[1] Univ Elect Sci & Technol China UESTC, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Automat & MOE Key Lab Syst Control & Informa, Shanghai 200240, Peoples R China
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024 | 2024年
基金
中国国家自然科学基金;
关键词
phase retrieval; tensor representation; total least squares; tensor ring; RANK;
D O I
10.1109/ICASSP48485.2024.10447076
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Phase retrieval seeks to reconstruct a series of image sequences from measurements that only capture their magnitudes. Current approaches either flatten and stack the image sequences, disregarding their multidimensional structural information, or fail to account for errors within the sensing vectors/tensors. To address these two issues simultaneously, we propose a unified framework for the phase retrieval problem, namely tensor total least squares (TTLS). Specifically, we set up a tensor representation for image sequences and the corresponding measurement model, and for the first time employ the advanced tensor ring network to effectively explore the inherent multidimensional structure for more accurate estimation. Moreover, in addition to the additive noise, the multiplicative errors within the sensing tensor can be also well-corrected, leading to a more robust estimation. Experimental results on both simulated data and real videos demonstrate the superiority of the proposed method.
引用
收藏
页码:6415 / 6419
页数:5
相关论文
共 25 条
[1]  
[Anonymous], 2016, CoRR, abs/1606.05535
[2]  
Butala MD, 2007, INT CONF ACOUST SPEE, P1217
[3]   Phase Retrieval via Wirtinger Flow: Theory and Algorithms [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Soltanolkotabi, Mahdi .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (04) :1985-2007
[4]   PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming [J].
Candes, Emmanuel J. ;
Strohmer, Thomas ;
Voroninski, Vladislav .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (08) :1241-1274
[5]   Total Least Squares Phase Retrieval [J].
Gupta, Sidharth ;
Dokmanic, Ivan .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 :536-549
[6]   PHASE PROBLEM IN CRYSTALLOGRAPHY [J].
HARRISON, RW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (05) :1046-1055
[7]   Provable tensor ring completion [J].
Huang, Huyan ;
Liu, Yipeng ;
Liu, Jiani ;
Zhu, Ce .
SIGNAL PROCESSING, 2020, 171
[8]   Robust sparse phase retrieval made easy [J].
Iwen, Mark ;
Viswanathan, Aditya ;
Wang, Yang .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, 42 (01) :135-142
[9]  
Jaganathan K, 2013, IEEE INT SYMP INFO, P1022, DOI 10.1109/ISIT.2013.6620381
[10]  
Kossaifi J, 2019, J MACH LEARN RES, V20