Estimation and Bayesian Prediction for the Generalized Exponential Distribution Under Type-II Censoring

被引:2
作者
Wang, Wei [1 ]
Gui, Wenhao [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
来源
SYMMETRY-BASEL | 2025年 / 17卷 / 02期
关键词
Bayesian estimation; type-II censoring; generalized exponential distribution; EM algorithm; bayesian prediction; INFERENCE; FAMILY;
D O I
10.3390/sym17020222
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This research focuses on the prediction and estimation problems for the generalized exponential distribution under Type-II censoring. Firstly, maximum likelihood estimations for the parameters of the generalized exponential distribution are computed using the EM algorithm. Additionally, confidence intervals derived from the Fisher information matrix are developed and analyzed alongside two bootstrap confidence intervals for comparison. Compared to classical maximum likelihood estimation, Bayesian inference proves to be highly effective in handling censored data. This study explores Bayesian inference for estimating the unknown parameters, considering both symmetrical and asymmetrical loss functions. Utilizing Gibbs sampling to produce Markov Chain Monte Carlo samples, we employ an importance sampling approach to obtain Bayesian estimates and compute the corresponding highest posterior density (HPD) intervals. Furthermore, for one-sample prediction and, separately, for the two-sample case, we provide the corresponding posterior distributions, along with methods for computing point predictions and predictive intervals. Through Monte Carlo simulations, we evaluate the performance of Bayesian estimation in contrast to maximum likelihood estimation. Finally, we conduct an analysis of a real dataset derived from deep groove ball bearings, calculating Bayesian point predictions and predictive intervals for future samples.
引用
收藏
页数:25
相关论文
共 28 条
[1]   Predicting observables from a general class of distributions [J].
Al-Hussaini, EK .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 79 (01) :79-91
[2]   Estimation and Prediction for the Poisson-Exponential Distribution Based on Type-II Censored Data [J].
Arabi Belaghi R. ;
Noori Asl M. ;
Gurunlu Alma O. ;
Singh S. ;
Vasfi M. .
American Journal of Mathematical and Management Sciences, 2019, 38 (01) :96-115
[3]   Monte Carlo estimation of Bayesian credible and HPD intervals [J].
Chen, MH ;
Shao, QM .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (01) :69-92
[4]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[5]  
Efron B., 1982, JACKKNIFE BOOTSTRAP, V38, DOI DOI 10.1137/1.9781611970319
[6]   Estimation of generalized exponential distribution based on an adaptive progressively type-II censored sample [J].
El-Din, M. M. M. Mohie ;
Amein, M. M. ;
Shafay, A. R. ;
Mohamed, Samar .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (07) :1292-1304
[7]  
Fisher R. A., 1922, Phil. Trans. R. Soc. Lond. A, V222, P309, DOI [DOI 10.1098/RSTA.1922.0009, 10.1098/rsta.1922.0009]
[8]  
Gompertz B., 1825, Philosophical Transactions of The Royal Society of London, V115, DOI [10.1098/rstl.1825.0026, DOI 10.1098/RSTL.1825.0026]
[9]   Statistical Inference of the Reliability for Generalized Exponential Distribution Under Progressive Type-II Censoring Schemes [J].
Guo, Lei ;
Gui, Wenhao .
IEEE TRANSACTIONS ON RELIABILITY, 2018, 67 (02) :470-480
[10]   Generalized exponential distribution: Existing results and some recent developments [J].
Gupta, Rameshwar D. ;
Kundu, Debasis .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (11) :3537-3547