Data-Efficient Tactile Sensing With Electrical Impedance Tomography

被引:0
作者
Dong, Huazhi [1 ]
Liu, Ronald Bingnan [1 ,2 ]
Micklem, Leo [3 ]
Peisan, E. Sharel [4 ]
Giorgio-Serchi, Francesco [3 ]
Yang, Yunjie [1 ]
机构
[1] Univ Edinburgh, Inst Imaging Data & Commun, Sch Engn, SMART Grp, Edinburgh EH9 3BF, Scotland
[2] Katholieke Univ Leuven, Dept Biosyst, B-3001 Leuven, Belgium
[3] Univ Edinburgh, Sch Engn, Inst Integrated Micro & Nano Syst, Edinburgh EH8 9YL, Scotland
[4] Univ Edinburgh, Inst Bioengn, Sch Engn, Edinburgh EH9 3DW, Scotland
基金
欧洲研究理事会;
关键词
Data augmentation; deep learning; electrical impedance tomography (EIT); robotic perception; tactile sensing; SKIN;
D O I
10.1109/JSEN.2025.3557949
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrical impedance tomography (EIT)-inspired tactile sensors are gaining attention in robotic tactile sensing due to their cost-effectiveness, safety, and scalability with sparse electrode configurations. This article presents a data augmentation strategy for learning-based tactile reconstruction that amplifies the original single-frame signal measurement into 32 distinct, effective signal data for training. This approach supplements uncollected conditions of position information, resulting in more accurate and high-resolution tactile reconstructions. Data augmentation for EIT significantly reduces the required EIT measurements and achieves promising performance with even limited samples. Simulation results show that the proposed method improves the correlation coefficient (CC) by over 12% and reduces the relative error by over 21% under various noise levels. Furthermore, we demonstrate that a standard deep neural network (DNN) utilizing the proposed data augmentation reduces the required data down to 1/31 while achieving a similar tactile reconstruction quality. Real-world tests further validate the approach's effectiveness on a flexible EIT-based tactile sensor. These results could help address the challenge of training tactile sensing networks with limited available measurements, improving the accuracy and applicability of EIT-based tactile sensing systems.
引用
收藏
页码:19724 / 19733
页数:10
相关论文
共 36 条
[1]  
Adler Andy., 2021, Electrical impedance tomography: methods, history and applications
[2]   A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics [J].
Boutry, Clementine M. ;
Negre, Marc ;
Jorda, Mikael ;
Vardoulis, Orestis ;
Chortos, Alex ;
Khatib, Oussama ;
Bao, Zhenan .
SCIENCE ROBOTICS, 2018, 3 (24)
[3]  
Chen Haofeng, 2022, 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), P178, DOI 10.1109/ROBIO55434.2022.10011766
[4]   A Skin-Like Hydrogel for Distributed Force Sensing Using an Electrical Impedance Tomography-Based Pseudo-Array Method [J].
Chen, Haofeng ;
Yang, Xuanxuan ;
Geng, Jialu ;
Ma, Gang ;
Wang, Xiaojie .
ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (03) :1451-1460
[5]   A Large-Area Flexible Tactile Sensor for Multi-Touch and Force Detection Using Electrical Impedance Tomography [J].
Chen, Haofeng ;
Yang, Xuanxuan ;
Wang, Peng ;
Geng, Jialu ;
Ma, Gang ;
Wang, Xiaojie .
IEEE SENSORS JOURNAL, 2022, 22 (07) :7119-7129
[6]  
Chen PG, 2024, Arxiv, DOI arXiv:2001.04086
[7]   Hybrid Learning-Based Cell Aggregate Imaging With Miniature Electrical Impedance Tomography [J].
Chen, Zhou ;
Yang, Yunjie ;
Bagnaninchi, Pierre-Olivier .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[8]  
Cubuk ED, 2019, Arxiv, DOI [arXiv:1805.09501, 10.48550/arXiv.1805.09501]
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]   Learning-Enhanced Electronic Skin for Tactile Sensing on Deformable Surface Based on Electrical Impedance Tomography [J].
Dong, Huazhi ;
Wu, Xiaopeng ;
Hu, Delin ;
Liu, Zhe ;
Giorgio-Serchi, Francesco ;
Yang, Yunjie .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74