Advancements in artificial intelligence for ultrasound diagnosis of ovarian cancer: a comprehensive review

被引:0
作者
Tang, Chenxin [1 ]
Xu, Zhenbin [2 ]
Duan, Hongpeng [2 ]
Zhang, Shengmin [2 ]
机构
[1] Ningbo Univ, Hlth Sci Ctr, Ningbo, Peoples R China
[2] Ningbo Univ, Affiliated Hosp 1, Dept Ultrasound Med, Ningbo, Peoples R China
关键词
artificial intelligence; ultrasound imaging; ovarian cancer; machine learning; deep learning; MALIGNANCY; MULTICENTER; PREDICTION; IMAGES; RISK; CT;
D O I
10.3389/fonc.2025.1581157
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Ovarian cancer, as a common gynecological malignancy, is often found at an advanced stage clinically. Thus, improving the early diagnosis of ovarian cancer is crucial for the survival rate of patients. Ultrasound examination is the main method for ovarian cancer screening, but it is greatly influenced by the operator's experience and technique, increasing the risk of misdiagnosis and missed diagnosis. Artificial intelligence uses computers to learn from input data and has already made significant progress in image recognition. Applying artificial intelligence to ultrasound diagnosis of ovarian cancer can enhance diagnostic accuracy, providing earlier treatment for patients. This article reviews the current application of artificial intelligence in the ultrasound diagnosis of ovarian cancer, in order to provide a reference for subsequent clinical diagnosis and treatment.
引用
收藏
页数:8
相关论文
共 48 条
[1]   Use of Nonlinear Features for Automated Characterization of Suspicious Ovarian Tumors Using Ultrasound Images in Fuzzy Forest Framework [J].
Acharya, U. Rajendra ;
Akter, Ayesha ;
Chowriappa, Pradeep ;
Dua, Sumeet ;
Raghavendra, U. ;
Koh, Joel E. W. ;
Tan, Jen Hong ;
Leong, Sook Sam ;
Vijayananthan, Anushya ;
Hagiwara, Yuki ;
Ramli, Marlina Tanty ;
Ng, Kwan Hoong .
INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2018, 20 (04) :1385-1402
[2]   An Evaluation of the Effectiveness of Image-based Texture Features Extracted from Static B-mode Ultrasound Images in Distinguishing between Benign and Malignant Ovarian Masses [J].
Al-karawi, Dhurgham ;
Al-Assam, Hisham ;
Du, Hongbo ;
Sayasneh, Ahmad ;
Landolfo, Chiara ;
Timmerman, Dirk ;
Bourne, Tom ;
Jassim, Sabah .
ULTRASONIC IMAGING, 2021, 43 (03) :124-138
[3]  
Anand S S, 2009, Med J Armed Forces India, V65, P353, DOI 10.1016/S0377-1237(09)80099-3
[4]   O-RADS US Risk Stratification and Management System: A Consensus Guideline from the ACR Ovarian-Adnexal Reporting and Data System Committee [J].
Andreotti, Rochelle F. ;
Timmerman, Dirk ;
Strachowski, Lori M. ;
Froyman, Wouter ;
Benacerraf, Beryl R. ;
Bennett, Genevieve L. ;
Bourne, Tom ;
Brown, Douglas L. ;
Coleman, Beverly G. ;
Frates, Mary C. ;
Goldstein, Steven R. ;
Hamper, Ulrike H. ;
Horrow, Mindy M. ;
Hernanz-Schulman, Marta ;
Reinhold, Caroline ;
Rose, Stephen L. ;
Whitcomb, Brad P. ;
Wolfman, Wendy L. ;
Glanc, Phyllis .
RADIOLOGY, 2020, 294 (01) :168-185
[5]   A machine learning approach applied to gynecological ultrasound to predict progression-free survival in ovarian cancer patients [J].
Arezzo, Francesca ;
Cormio, Gennaro ;
La Forgia, Daniele ;
Santarsiero, Carla Mariaflavia ;
Mongelli, Michele ;
Lombardi, Claudio ;
Cazzato, Gerardo ;
Cicinelli, Ettore ;
Loizzi, Vera .
ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2022, 306 (06) :2143-2154
[6]  
Arora T., 2024, Statpearls
[7]   Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].
Bray, Freddie ;
Laversanne, Mathieu ;
Sung, Hyuna ;
Ferlay, Jacques ;
Siegel, Rebecca L. ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin .
CA-A CANCER JOURNAL FOR CLINICIANS, 2024, 74 (03) :229-263
[8]   Deep Learning Prediction of Ovarian Malignancy at US Compared with O-RADS and Expert Assessment [J].
Chen, Hui ;
Yang, Bo-Wen ;
Qian, Le ;
Meng, Yi-Shuang ;
Bai, Xiang-Hui ;
Hong, Xiao-Wei ;
He, Xin ;
Jiang, Mei-Jiao ;
Yuan, Fei ;
Du, Qin-Wen ;
Feng, Wei-Wei .
RADIOLOGY, 2022, 304 (01) :106-113
[9]   The International Ovarian Tumor Analysis Assessment of Different Neoplasias in the Adnexa (IOTA-ADNEX) Model Assessment for Risk of Ovarian Malignancy in Adnexal Masses [J].
Cherukuri, Srinidhi ;
Jajoo, Shubhada ;
Dewani, Deepika .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (11)
[10]   A decision support system based on radiomics and machine learning to predict the risk of malignancy of ovarian masses from transvaginal ultrasonography and serum CA-125 [J].
Chiappa, Valentina ;
Interlenghi, Matteo ;
Bogani, Giorgio ;
Salvatore, Christian ;
Bertolina, Francesca ;
Sarpietro, Giuseppe ;
Signorelli, Mauro ;
Ronzulli, Dominique ;
Castiglioni, Isabella ;
Raspagliesi, Francesco .
EUROPEAN RADIOLOGY EXPERIMENTAL, 2021, 5 (01)