Computed tomography-based deep learning radiomics model for preoperative prediction of tumor immune microenvironment in colorectal cancer

被引:1
作者
Zhou, Chuan [1 ,2 ,3 ]
Zhang, Yun-Feng [1 ]
Yang, Zhi-Jun [1 ]
Huang, Yu-Qian [4 ]
Da, Ming-Xu [1 ,2 ,3 ,5 ]
机构
[1] Lanzhou Univ, Clin Med Coll 1, 222 South Tianshui Rd, Lanzhou 730000, Gansu, Peoples R China
[2] Gansu Prov Hosp, NHC Key Lab Diag & Therapy Gastrointestinal Tumor, Lanzhou 730000, Gansu, Peoples R China
[3] Gansu Prov Hosp, Key Lab Mol Diagnost & Precis Med Surg Oncol Gansu, Lanzhou 730000, Gansu, Peoples R China
[4] Chengdu Second Peoples Hosp, Ctr Med Cosmetol, Chengdu 610017, Sichuan, Peoples R China
[5] Gansu Prov Hosp, Dept Surg Oncol, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Radiomics; Computed tomography imaging; Colorectal cancer; Tumor immune microenvironment; STROMA RATIO; SURVIVAL; IMMUNOSCORE; IMAGES;
D O I
10.4251/wjgo.v17.i5.106103
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer-related death globally, with the tumor immune microenvironment (TIME) influencing prognosis and immunotherapy response. Current TIME evaluation relies on invasive biopsies, limiting its clinical application. This study hypothesized that computed tomography (CT)-based deep learning (DL) radiomics models can non-invasively predict key TIME biomarkers: Tumor-stroma ratio (TSR), tumor-infiltrating lymphocytes (TILs), and immune score (IS). AIM To develop a non-invasive DL approach using preoperative CT radiomics to evaluate TIME components in CRC patients. METHODS In this retrospective study, preoperative CT images of 315 pathologically confirmed CRC patients (220 in training cohort and 95 in validation cohort) were analyzed. Manually delineated regions of interest were used to extract DL features. Predictive models (DenseNet-121/169) for TSR, TILs, IS, and TIME classification were constructed. Performance was evaluated via receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA). RESULTS The DL-DenseNet-169 model achieved area under the curve (AUC) values of 0.892 [95% confidence interval (CI): 0.828-0.957] for TSR and 0.772 (95%CI: 0.674-0.870) for TIME score. The DenseNet-121 model yielded AUC values of 0.851 (95%CI: 0.768-0.933) for TILs and 0.852 (95%CI: 0.775-0.928) for IS. Calibration curves demonstrated strong prediction-observation agreement, and DCA confirmed clinical utility across threshold probabilities (P < 0.05 for all models). CONCLUSION CT-based DL radiomics provides a reliable non-invasive method for preoperative TIME evaluation, enabling personalized immunotherapy strategies in CRC management.
引用
收藏
页数:17
相关论文
共 51 条
[1]   Multiparametric MRI-based radiomics signature for preoperative estimation of tumor-stroma ratio in rectal cancer [J].
Cai, Chongpeng ;
Hu, Tingdan ;
Gong, Jing ;
Huang, Dan ;
Liu, Fangqi ;
Fu, Caixia ;
Tong, Tong .
EUROPEAN RADIOLOGY, 2021, 31 (05) :3326-3335
[2]   Robustness of CT radiomics features: consistency within and between single-energy CT and dual-energy CT [J].
Chen, Yong ;
Zhong, Jingyu ;
Wang, Lan ;
Shi, Xiaomeng ;
Lu, Wei ;
Li, Jianying ;
Feng, Jianxing ;
Xia, Yihan ;
Chang, Rui ;
Fan, Jing ;
Chen, Liwei ;
Zhu, Ying ;
Yan, Fuhua ;
Yao, Weiwu ;
Zhang, Huan .
EUROPEAN RADIOLOGY, 2022, 32 (08) :5480-5490
[3]   The Pan-Immune-Inflammation Value in microsatellite instability-high metastatic colorectal cancer patients treated with immune checkpoint inhibitors [J].
Corti, Francesca ;
Lonardi, Sara ;
Intini, Rossana ;
Salati, Massimiliano ;
Fenocchio, Elisabetta ;
Belli, Carmen ;
Borelli, Beatrice ;
Brambilla, Marta ;
Prete, Alessandra A. ;
Quara, Virginia ;
Antista, Maria ;
Fassan, Matteo ;
Morano, Federica ;
Spallanzani, Andrea ;
Ambrosini, Margherita ;
Curigliano, Giuseppe ;
de Braud, Filippo ;
Zagonel, Vittorina ;
Fuca, Giovanni ;
Pietrantonio, Filippo .
EUROPEAN JOURNAL OF CANCER, 2021, 150 :155-167
[4]   Radiomics Response Signature for Identification of Metastatic Colorectal Cancer Sensitive to Therapies Targeting EGFR Pathway [J].
Dercle, Laurent ;
Lu, Lin ;
Schwartz, Lawrence H. ;
Qian, Min ;
Tejpar, Sabine ;
Eggleton, Peter ;
Zhao, Binsheng ;
Piessevaux, Hubert .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2020, 112 (09) :902-912
[5]   Commentary: Radiomics in oncology: A 10-year bibliometric analysis [J].
Fan, Guoxin ;
Qin, Jiaqi ;
Liu, Huaqing ;
Liao, Xiang .
FRONTIERS IN ONCOLOGY, 2022, 12
[6]   CT attenuation of liver metastases before targeted therapy is a prognostic factor of overall survival in colorectal cancer patients. Results from the randomised, open-label FIRE-3/AIO KRK0306 trial [J].
Froelich, Matthias F. ;
Heinemann, Volker ;
Sommer, Wieland H. ;
Holch, Julian W. ;
Schoeppe, Franziska ;
Hesse, Nina ;
Baumann, Alena B. ;
Kunz, Wolfgang G. ;
Reiser, Maximilian F. ;
Ricke, Jens ;
D'Anastasi, Melvin ;
Stintzing, Sebastian ;
Modest, Dominik P. ;
Kazmierczak, Philipp M. ;
Hofmann, Felix O. .
EUROPEAN RADIOLOGY, 2018, 28 (12) :5284-5292
[7]   Immunoscore and Immunoprofiling in cancer: an update from the melanoma and immunotherapy bridge 2015 [J].
Galon, J. ;
Fox, B. A. ;
Bifulco, C. B. ;
Masucci, G. ;
Rau, T. ;
Botti, G. ;
Marincola, F. M. ;
Ciliberto, G. ;
Pages, F. ;
Ascierto, P. A. ;
Capone, M. .
JOURNAL OF TRANSLATIONAL MEDICINE, 2016, 14
[8]   Immunotherapy in colorectal cancer: rationale, challenges and potential [J].
Ganesh, Karuna ;
Stadler, Zsofia K. ;
Cercek, Andrea ;
Mendelsohn, Robin B. ;
Shia, Jinru ;
Segal, Neil H. ;
Diaz, Luis A., Jr. .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2019, 16 (06) :361-375
[9]   Radiomics predicts response of individualHER2-amplified colorectal cancer liver metastases in patients treated withHER2-targeted therapy [J].
Giannini, Valentina ;
Rosati, Samanta ;
Defeudis, Arianna ;
Balestra, Gabriella ;
Vassallo, Lorenzo ;
Cappello, Giovanni ;
Mazzetti, Simone ;
De Mattia, Cristina ;
Rizzetto, Francesco ;
Torresin, Alberto ;
Sartore-Bianchi, Andrea ;
Siena, Salvatore ;
Vanzulli, Angelo ;
Leone, Francesco ;
Zagonel, Vittorina ;
Marsoni, Silvia ;
Regge, Daniele .
INTERNATIONAL JOURNAL OF CANCER, 2020, 147 (11) :3215-3223
[10]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577