A review on the use of machine learning techniques in monkeypox disease prediction

被引:5
作者
Rampogu, Shailima [1 ]
机构
[1] Cachet Big Data Lab, Hyderabad 500045, Telangana, India
来源
SCIENCE IN ONE HEALTH | 2023年 / 2卷
关键词
Machine learning; Monkeypox; Supervised learning; Unsupervised learning; Sentiment analysis; ARTIFICIAL-INTELLIGENCE; SENTIMENT ANALYSIS; OUTBREAK; TRANSMISSION; PERFORMANCE; MODELS;
D O I
10.1016/j.soh.2023.100040
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Infectious diseases have posed a global threat recently, progressing from endemic to pandemic. Early detection and finding a better cure are methods for curbing the disease and its transmission. Machine learning (ML) has demonstrated to be an ideal approach for early disease diagnosis. This review highlights the use of ML algorithms for monkeypox (MP). Various models, such as CNN, DL, NLP, Na & iuml;ve Bayes, GRA-TLA, HMD, ARIMA, SEL, Regression analysis, and Twitter posts were built to extract useful information from the dataset. These findings show that detection, classification, forecasting, and sentiment analysis are primarily analyzed. Furthermore, this review will assist researchers in understanding the latest implementations of ML in MP and further progress in the field to discover potent therapeutics.
引用
收藏
页数:9
相关论文
共 100 条
[81]  
Sanguansat P., 2012, Principal Component Analysis dalam distribusi spasial, DOI DOI 10.5772/2693
[82]  
Sarang P., 2023, Naive Bayes BT-Thinking Data Science: A Data Science Practitioner's Guide, P143, DOI [10.1007/978-3-031-02363-77, DOI 10.1007/978-3-031-02363-77]
[83]   Artificial Intelligence and Machine Learning in Nuclear Medicine: Future Perspectives [J].
Seifert, Robert ;
Weber, Manuel ;
Kocakavuk, Emre ;
Rischpler, Christoph ;
Kersting, David .
SEMINARS IN NUCLEAR MEDICINE, 2020, 51 (02) :170-177
[84]   Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images [J].
Sharifrazi, Danial ;
Alizadehsani, Roohallah ;
Roshanzamir, Mohamad ;
Joloudari, Javad Hassannataj ;
Shoeibi, Afshin ;
Jafari, Mahboobeh ;
Hussain, Sadiq ;
Sani, Zahra Alizadeh ;
Hasanzadeh, Fereshteh ;
Khozeimeh, Fahime ;
Khosravi, Abbas ;
Nahavandi, Saeid ;
Panahiazar, Maryam ;
Zare, Assef ;
Islam, Sheikh Mohammed Shariful ;
Acharya, U. Rajendra .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68
[85]   Human monkeypox and smallpox viruses: genomic comparison [J].
Shchelkunov, SN ;
Totmenin, AV ;
Babkin, IV ;
Safronov, PF ;
Ryazankina, OI ;
Petrov, NA ;
Gutorova, VV ;
Uvarova, EA ;
Mikheev, MV ;
Sisler, JR ;
Esposito, JJ ;
Jahrling, PB ;
Moss, B ;
Sandakhchiev, LS .
FEBS LETTERS, 2001, 509 (01) :66-70
[86]  
Shen Rong, 2018, MATEC Web of Conferences, V176, DOI 10.1051/matecconf/201817601033
[87]   Monkeypox: A Review [J].
Singhal, Tanu ;
Kabra, S. K. ;
Lodha, Rakesh .
INDIAN JOURNAL OF PEDIATRICS, 2022, 89 (10) :955-960
[88]   Monkeypox Virus Detection Using Pre-trained Deep Learning-based Approaches [J].
Sitaula, Chiranjibi ;
Shahi, Tej Bahadur .
JOURNAL OF MEDICAL SYSTEMS, 2022, 46 (11)
[89]   Emergence of Monkeypox as the Most Important Orthopoxvirus Infection in Humans [J].
Sklenovska, Nikola ;
Van Ranst, Marc .
FRONTIERS IN PUBLIC HEALTH, 2018, 6
[90]  
Song Yan-Yan, 2015, Shanghai Arch Psychiatry, V27, P130, DOI 10.11919/j.issn.1002-0829.215044