Maintaining optimum performance for beam alignment at the National Ignition Facility

被引:0
作者
Awwal, Abdul A. S. [1 ]
Lowe-Webb, Roger R. [1 ]
Liu, Edmund [1 ]
Ray, Peter S. [1 ]
Thomas, Avi [1 ]
Patel, Bela Praful [1 ]
Kalantar, Daniel H. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Integrated Comp Control Syst, Natl Ignit Facil, Computat Engn Div, Lawrence, CA 94551 USA
来源
HIGH POWER LASERS FOR FUSION RESEARCH VIII | 2025年 / 13343卷
关键词
laser beam alignment; image processing; National Ignition Facility; inertial confinement fusion; high energy density physics; stockpile stewardship; automatic alignment; NIF; ICF; HED; SYSTEM;
D O I
10.1117/12.3046145
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Automatic alignment plays a crucial role in aligning 192 laser beams in the National Ignition Facility to achieve inertial confinement fusion by irradiating a millimeter scale fusion target within a 50-micron alignment accuracy. Cameras placed along the beam path capture the images that are processed by image processing algorithms to measure the position of a beam for subsequent adjustment. Each algorithm is implemented with three main components: an off-normal detector, an algorithm, and an uncertainty quantifier. While the algorithm estimates the position of the beam from the image, the off-normal detector ensures that the beam-feature is legitimate and not spurious noise. Many algorithms operate with externally defined parameters that can be optimized based on the condition or statistics of any specific beamline image. These operating conditions are constantly changing as camera pixels are exposed to neutron radiation during high-yield, inertial confinement fusion experiments. Consequently, periodic off-line tests, online tests, and simulations are performed to predict how pixel degradation or changes of imaging conditions affect alignment accuracy. Hardware aging, camera noise, artifacts from spurious light sources and reflections, and ongoing replacement of critical optics are challenges that must be addressed on a continual basis. The objective of this work is to describe these ongoing efforts that demonstrate the accuracy and robustness of the automatic alignment system. We show examples from laser beam alignment, target-diagnostics alignment, and the second/third harmonic generator angle adjustment. As a result of these maintenance activities, we have identified that the automatic alignment algorithms need to be updated periodically, and specific image processing parameters need to be optimized to match the current imaging conditions of specific beamlines for specific alignment tasks.
引用
收藏
页数:13
相关论文
共 10 条
[1]   Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment [J].
Abu-Shawareb, H. ;
Acree, R. ;
Adams, P. ;
Adams, J. ;
Addis, B. ;
Aden, R. ;
Adrian, P. ;
Afeyan, B. B. ;
Aggleton, M. ;
Aghaian, L. ;
Aguirre, A. ;
Aikens, D. ;
Akre, J. ;
Albert, F. ;
Albrecht, M. ;
Albright, B. J. ;
Albritton, J. ;
Alcala, J. ;
Alday, C., Jr. ;
Alessi, D. A. ;
Alexander, N. ;
Alfonso, J. ;
Alfonso, N. ;
Alger, E. ;
Ali, S. J. ;
Ali, Z. A. ;
Allen, A. ;
Alley, W. E. ;
Amala, P. ;
Amendt, P. A. ;
Amick, P. ;
Ammula, S. ;
Amorin, C. ;
Ampleford, D. J. ;
Anderson, R. W. ;
Anklam, T. ;
Antipa, N. ;
Appelbe, B. ;
Aracne-Ruddle, C. ;
Araya, E. ;
Archuleta, T. N. ;
Arend, M. ;
Arnold, P. ;
Arnold, T. ;
Arsenlis, A. ;
Asay, J. ;
Atherton, L. J. ;
Atkinson, D. ;
Atkinson, R. ;
Auerbach, M. .
PHYSICAL REVIEW LETTERS, 2024, 132 (06)
[2]   Detection and tracking of the backreflection of potassium dihydrogen phosphate images in the presence or absence of a phase mask [J].
Awwal, AAS ;
McClay, WA ;
Ferguson, WS ;
Candy, JV ;
Salmon, T ;
Wegner, P .
APPLIED OPTICS, 2006, 45 (13) :3038-3048
[3]   Role of redundancy in boosting the robustness in Image analysis in the Automatic Alignment System at the National ignition Facility [J].
Awwal, Abdul A. S. .
OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XVIII, 2024, 13136
[4]   Centroid stabilization for laser alignment to corner cubes: designing a matched filter [J].
Awwal, Abdul A. S. ;
Bliss, Erlan ;
Brunton, Gordon ;
Kamm, Victoria Miller ;
Leach, Richard R., Jr. ;
Lowe-Webb, Roger ;
Roberts, Randy ;
Wilhelmsen, Karl .
APPLIED OPTICS, 2017, 56 (01) :A41-A51
[5]   Effects on beam alignment due to neutron-irradiated CCD images at the National Ignition Facility [J].
Awwal, Abdul A. S. ;
Manuel, Anastacia ;
Datte, Philip ;
Eckart, Mark ;
Jackson, Mark ;
Azevedo, Steve ;
Burkhart, Scott .
OPTICS AND PHOTONICS FOR INFORMATION PROCESSING V, 2011, 8134
[6]  
Awwal Abdul A. S., 2023, High Power Lasers for Fusion Research, VVII
[7]   National Ignition Facility system alignment [J].
Burkhart, S. C. ;
Bliss, E. ;
Di Nicola, P. ;
Kalantar, D. ;
Lowe-Webb, R. ;
McCarville, T. ;
Nelson, D. ;
Salmon, T. ;
Schindler, T. ;
Villanueva, J. ;
Wilhelmsen, K. .
APPLIED OPTICS, 2011, 50 (08) :1136-1157
[8]   National Ignition Facility commissioning and performance [J].
Van Wonterghem, BM ;
Burkhart, SC ;
Haynam, CA ;
Manes, KR ;
Marshall, CD ;
Murray, JE ;
Spaeth, ML ;
Speck, DR ;
Sutton, SB ;
Wegner, PJ .
OPTICAL ENGINEERING AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY II: THE NATIONAL IGNITION FACILITY, 2004, 5341 :55-65
[9]   NIF final optics system: frequency conversion and beam conditioning [J].
Wegner, P ;
Auerbach, J ;
Biesiada, T ;
Dixit, S ;
Lawson, J ;
Menapace, J ;
Parham, T ;
Swift, D ;
Whitman, P ;
Williams, W .
OPTICAL ENGINEERING AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY II: THE NATIONAL IGNITION FACILITY, 2004, 5341 :180-189
[10]   2011 Status of the automatic alignment system for the National Ignition Facility [J].
Wilhelmsen, K. ;
Awwal, A. ;
Brunton, G. ;
Burkhart, S. ;
McGuigan, D. ;
Kamm, V. Miller ;
Leach, R., Jr. ;
Lowe-Webb, R. ;
Wilson, R. .
FUSION ENGINEERING AND DESIGN, 2012, 87 (12) :1989-1993