Unveiling Salt Tolerance Mechanisms in Plants: Integrating the KANMB Machine Learning Model With Metabolomic and Transcriptomic Analysis

被引:1
作者
Chen, Shoukun [1 ,2 ,3 ]
Zhang, Hao [1 ,2 ]
Gao, Shuqiang [1 ,2 ]
He, Kunhui [1 ,2 ]
Yu, Tingxi [1 ,2 ]
Gao, Shang [1 ,2 ]
Wang, Jiankang [1 ,2 ]
Li, Huihui [1 ,2 ]
机构
[1] Chinese Acad Agr Sci CAAS, Inst Crop Sci, State Key Lab Crop Gene Resources & Breeding, Beijing 100081, Peoples R China
[2] CAAS, Nanfan Res Inst, Sanya 572024, Hainan, Peoples R China
[3] Guangxi Acad Agr Sci, Rice Res Inst, Guangxi Key Lab Rice Genet & Breeding, Nanning 530007, Guangxi, Peoples R China
基金
海南省自然科学基金; 国家重点研发计划;
关键词
KANMB; metabolomic; salt tolerance; Spartina alterniflora; transcriptomic; MOLECULAR-MECHANISMS; STRESS TOLERANCE; RICE; SALINITY; DROUGHT; GROWTH; RESPONSES; DATABASE; PATHWAYS; GENOMICS;
D O I
10.1002/advs.202417560
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Salt stress presents a substantial threat to cereal crop productivity, especially in coastal agricultural regions where salinity levels are high. Addressing this challenge requires innovative approaches to uncover genetic resources that support molecular breeding of salt-tolerant crops. In this study, a novel machine learning model, KANMB is introduced, designed to analyze integrated multi-omics data from the natural halophyte Spartina alterniflora under various NaCl concentrations. Using KANMB, 226 metabolic biomarkers significantly linked to salt stress responses, grounded in metabolomic and transcriptomic profiles are identified. These biomarkers correlate with metabolic pathways associated with salt tolerance, providing insight into the underlying biochemical mechanisms. A co-expression analysis further highlights the MYB gene SaMYB35 as a pivotal regulator in the flavonoid biosynthesis pathway under salt stress. When overexpressed SaMYB35 in rice (ZH11) grown under high salinity, it triggers the upregulation of key flavonoid biosynthetic genes, elevates flavonoid content, and enhances salt tolerance compared to wild-type plants. The findings from this study offer a valuable genetic toolkit for breeding salt-tolerant cereal varieties and demonstrate the power of machine learning in accelerating biomarker discovery for stress resilience in non-model plant species.
引用
收藏
页数:16
相关论文
共 64 条
[1]   Genetic strategies for improving crop yields [J].
Bailey-Serres, Julia ;
Parker, Jane E. ;
Ainsworth, Elizabeth A. ;
Oldroyd, Giles E. D. ;
Schroeder, Julian I. .
NATURE, 2019, 575 (7781) :109-118
[2]   Stalk cell polar ion transport provide for bladder-based salinity tolerance in Chenopodium quinoa [J].
Bazihizina, Nadia ;
Boehm, Jennifer ;
Messerer, Maxim ;
Stigloher, Christian ;
Mueller, Heike M. ;
Cuin, Tracey Ann ;
Maierhofer, Tobias ;
Cabot, Joan ;
Mayer, Klaus F. X. ;
Fella, Christian ;
Huang, Shouguang ;
Al-Rasheid, Khaled A. S. ;
Alquraishi, Saleh ;
Breadmore, Michael ;
Mancuso, Stefano ;
Shabala, Sergey ;
Ache, Peter ;
Zhang, Heng ;
Zhu, Jian-Kang ;
Hedrich, Rainer ;
Scherzer, Soenke .
NEW PHYTOLOGIST, 2022, 235 (05) :1822-1835
[3]   Transgene Pyramiding of Salt Responsive Protein 3-1 (SaSRP3-1) and SaVHAc1 From Spartina alterniflora L. Enhances Salt Tolerance in Rice [J].
Biradar, Hanamareddy ;
Karan, Ratna ;
Subudhi, Prasanta K. .
FRONTIERS IN PLANT SCIENCE, 2018, 9
[4]   Transcriptome Changes Reveal the Molecular Mechanisms of Humic Acid-Induced Salt Stress Tolerance in Arabidopsis [J].
Cha, Joon-Yung ;
Kang, Sang-Ho ;
Ji, Myung Geun ;
Shin, Gyeong-Im ;
Jeong, Song Yi ;
Ahn, Gyeongik ;
Kim, Min Gab ;
Jeon, Jong-Rok ;
Kim, Woe-Yeon .
MOLECULES, 2021, 26 (04)
[5]   The Spartina alterniflora genome sequence provides insights into the salt-tolerance mechanisms of exo-recretohalophytes [J].
Chen, Shoukun ;
Du, Tingting ;
Huang, Zhangping ;
He, Kunhui ;
Yang, Maogeng ;
Gao, Shang ;
Yu, Tingxi ;
Zhang, Hao ;
Li, Xiang ;
Chen, Shihua ;
Liu, Chun-Ming ;
Li, Huihui .
PLANT BIOTECHNOLOGY JOURNAL, 2024, 22 (09) :2558-2574
[6]   LIPID MAPS: update to databases and tools for the lipidomics community [J].
Conroy, Matthew J. ;
Andrews, Robert M. ;
Andrews, Simon ;
Cockayne, Lauren ;
Dennis, Edward A. ;
Fahy, Eoin ;
Gaud, Caroline ;
Griffiths, William J. ;
Jukes, Geoff ;
Kolchin, Maksim ;
Mendivelso, Karla ;
Lopez-Clavijo, Andrea F. ;
Ready, Caroline ;
Subramaniam, Shankar ;
O'Donnell, Valerie B. .
NUCLEIC ACIDS RESEARCH, 2024, 52 (D1) :D1677-D1682
[7]   The Grapevine R2R3-MYB Transcription Factor VvMYBF1 Regulates Flavonol Synthesis in Developing Grape Berries [J].
Czemmel, Stefan ;
Stracke, Ralf ;
Weisshaar, Bernd ;
Cordon, Nicole ;
Harris, Nilangani N. ;
Walker, Amanda R. ;
Robinson, Simon P. ;
Bogs, Jochen .
PLANT PHYSIOLOGY, 2009, 151 (03) :1513-1530
[8]   Combined transcriptomic and metabolomic analysis of alginate oligosaccharides alleviating salt stress in rice seedlings [J].
Du, You-Wei ;
Liu, Ling ;
Feng, Nai-Jie ;
Zheng, Dian-Feng ;
Liu, Mei-Ling ;
Zhou, Hang ;
Deng, Peng ;
Wang, Ya-xing ;
Zhao, Hui-Min .
BMC PLANT BIOLOGY, 2023, 23 (01)
[9]   Artificial intelligence in plant breeding [J].
Farooq, Muhammad Amjad ;
Gao, Shang ;
Hassan, Muhammad Adeel ;
Huang, Zhangping ;
Rasheed, Awais ;
Hearne, Sarah ;
Prasanna, Boddupalli ;
Li, Xinhai ;
Li, Huihui .
TRENDS IN GENETICS, 2024, 40 (10) :891-908
[10]   Mining salt stress-related genes in Spartina alterniflora via analyzing co-evolution signal across 365 plant species using phylogenetic profiling [J].
Gao, Shang ;
Chen, Shoukun ;
Yang, Maogeng ;
Wu, Jinran ;
Chen, Shihua ;
Li, Huihui .
ABIOTECH, 2023, 4 (04) :291-302