Strategies for Implementing Machine Learning Algorithms in the Clinical Practice of Radiology

被引:13
作者
Chae, Allison [5 ]
Yao, Michael S. [1 ,5 ]
Sagreiya, Hersh [2 ,5 ]
Goldberg, Ari D. [6 ]
Chatterjee, Neil [2 ]
MacLean, Matthew T. [2 ]
Duda, Jeffrey [2 ]
Elahi, Ameena [7 ]
Borthakur, Arijitt [2 ,5 ,8 ]
Ritchie, Marylyn D. [3 ]
Rader, Daniel [4 ]
Kahn, Charles E. [2 ,5 ]
Witschey, Walter R. [2 ,5 ]
Gee, James C. [2 ,5 ]
机构
[1] Univ Penn, Dept Bioengn, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Genet, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Med, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[5] Univ Penn, Perelman Sch Med, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[6] Loyola Univ, Med Ctr, Dept Radiol, Maywood, IL USA
[7] Univ Penn, Dept Informat Serv, Philadelphia, PA USA
[8] Univ Penn, Leonard Davis Inst Hlth Econ, Philadelphia, PA USA
基金
美国国家卫生研究院;
关键词
ARTIFICIAL-INTELLIGENCE; BIOBANK; QUANTIFICATION;
D O I
10.1148/radiol.223170
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Despite recent advancements in machine learning (ML) applications in health care, there have been few benefits and improvements to clinical medicine in the hospital setting. To facilitate clinical adaptation of methods in ML, this review proposes a standardized framework for the step-by-step implementation of artificial intelligence into the clinical practice of radiology that focuses on three key components: problem identification, stakeholder alignment, and pipeline integration. A review of the recent literature and empirical evidence in radiologic imaging applications justifies this approach and offers a discussion on structuring implementation efforts to help other hospital practices leverage ML to improve patient care. © 2024 Radiological Society of North America Inc.. All rights reserved.
引用
收藏
页数:12
相关论文
共 109 条
[81]   Machine learning in medicine: a practical introduction [J].
Sidey-Gibbons, Jenni A. M. ;
Sidey-Gibbons, Chris J. .
BMC MEDICAL RESEARCH METHODOLOGY, 2019, 19 (1)
[82]  
Silcox C, 2020, NEJM Catal, V1
[83]  
Sriram Anuroop, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12262), P64, DOI 10.1007/978-3-030-59713-9_7
[84]   Problem Identification: The First Step in Evidence-Based Practice [J].
Stannard, Daphne .
AORN JOURNAL, 2021, 113 (04) :377-378
[85]   UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age [J].
Sudlow, Cathie ;
Gallacher, John ;
Allen, Naomi ;
Beral, Valerie ;
Burton, Paul ;
Danesh, John ;
Downey, Paul ;
Elliott, Paul ;
Green, Jane ;
Landray, Martin ;
Liu, Bette ;
Matthews, Paul ;
Ong, Giok ;
Pell, Jill ;
Silman, Alan ;
Young, Alan ;
Sprosen, Tim ;
Peakman, Tim ;
Collins, Rory .
PLOS MEDICINE, 2015, 12 (03)
[86]   Adopting Artificial Intelligence in Public Healthcare: The Effect of Social Power and Learning Algorithms [J].
Sun, Tara Qian .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (23)
[87]  
Thomas L Brannon, 2021, Fed Pract, V38, P527, DOI 10.12788/fp.0174
[88]   High-performance medicine: the convergence of human and artificial intelligence [J].
Topol, Eric J. .
NATURE MEDICINE, 2019, 25 (01) :44-56
[89]  
U.S. Food & Drug Administration, 2021, Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan
[90]  
US Food and Drug Administration, 2022, Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices