Strategies for Implementing Machine Learning Algorithms in the Clinical Practice of Radiology

被引:1
作者
Chae, Allison [5 ]
Yao, Michael S. [1 ,5 ]
Sagreiya, Hersh [2 ,5 ]
Goldberg, Ari D. [6 ]
Chatterjee, Neil [2 ]
MacLean, Matthew T. [2 ]
Duda, Jeffrey [2 ]
Elahi, Ameena [7 ]
Borthakur, Arijitt [2 ,5 ,8 ]
Ritchie, Marylyn D. [3 ]
Rader, Daniel [4 ]
Kahn, Charles E. [2 ,5 ]
Witschey, Walter R. [2 ,5 ]
Gee, James C. [2 ,5 ]
机构
[1] Univ Penn, Dept Bioengn, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Genet, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Med, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[5] Univ Penn, Perelman Sch Med, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[6] Loyola Univ, Med Ctr, Dept Radiol, Maywood, IL USA
[7] Univ Penn, Dept Informat Serv, Philadelphia, PA USA
[8] Univ Penn, Leonard Davis Inst Hlth Econ, Philadelphia, PA USA
基金
美国国家卫生研究院;
关键词
ARTIFICIAL-INTELLIGENCE; BIOBANK; QUANTIFICATION;
D O I
10.1148/radiol.223170
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Despite recent advancements in machine learning (ML) applications in health care, there have been few benefits and improvements to clinical medicine in the hospital setting. To facilitate clinical adaptation of methods in ML, this review proposes a standardized framework for the step-by-step implementation of artificial intelligence into the clinical practice of radiology that focuses on three key components: problem identification, stakeholder alignment, and pipeline integration. A review of the recent literature and empirical evidence in radiologic imaging applications justifies this approach and offers a discussion on structuring implementation efforts to help other hospital practices leverage ML to improve patient care. © 2024 Radiological Society of North America Inc.. All rights reserved.
引用
收藏
页数:12
相关论文
共 109 条
[11]  
Boch M, 2022, Information Systems and Technologies. WorldCIST, V469
[12]   The Evolution of a Large Biobank at Mass General Brigham [J].
Boutin, Natalie T. ;
Schecter, Samantha B. ;
Perez, Emma F. ;
Tchamitchian, Natasha S. ;
Cerretani, Xander R. ;
Gainer, Vivian S. ;
Lebo, Matthew S. ;
Mahanta, Lisa M. ;
Karlson, Elizabeth W. ;
Smoller, Jordan W. .
JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (08)
[13]   The UK Biobank resource with deep phenotyping and genomic data [J].
Bycroft, Clare ;
Freeman, Colin ;
Petkova, Desislava ;
Band, Gavin ;
Elliott, Lloyd T. ;
Sharp, Kevin ;
Motyer, Allan ;
Vukcevic, Damjan ;
Delaneau, Olivier ;
O'Connell, Jared ;
Cortes, Adrian ;
Welsh, Samantha ;
Young, Alan ;
Effingham, Mark ;
McVean, Gil ;
Leslie, Stephen ;
Allen, Naomi ;
Donnelly, Peter ;
Marchini, Jonathan .
NATURE, 2018, 562 (7726) :203-+
[14]   Training Strategies for Radiology Deep Learning Models in Data-limited Scenarios [J].
Candemir, Sema ;
Nguyen, Xuan, V ;
Folio, Les R. ;
Prevedello, Luciano M. .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (06)
[15]   Why Data Scientists Prefer Glassbox Machine Learning: Algorithms, Differential Privacy, Editing and Bias Mitigation [J].
Caruana, Rich ;
Nori, Harsha .
PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, :4776-4777
[16]   Artificial intelligence for strengthening healthcare systems in low- and middle-income countries: a systematic scoping review [J].
Ciecierski-Holmes, Tadeusz ;
Singh, Ritvij ;
Axt, Miriam ;
Brenner, Stephan ;
Barteit, Sandra .
NPJ DIGITAL MEDICINE, 2022, 5 (01)
[17]  
Crisan A, 2022, PROCEEDINGS OF 2022 5TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2022, P427, DOI 10.1145/3531146.3533108
[18]   A data management infrastructure for the integration of imaging and omics data in life sciences [J].
Cuellar, Luis Kuhn ;
Friedrich, Andreas ;
Gabernet, Gisela ;
de la Garza, Luis ;
Fillinger, Sven ;
Seyboldt, Adrian ;
Koch, Tobias ;
Zur Oven-Krockhaus, Sven ;
Wanke, Friederike ;
Richter, Sandra ;
Thaiss, Wolfgang M. ;
Horger, Marius ;
Malek, Nisar ;
Harter, Klaus ;
Bitzer, Michael ;
Nahnsen, Sven .
BMC BIOINFORMATICS, 2022, 23 (01)
[19]  
Daye D, 2022, RADIOLOGY, V305, P555, DOI 10.1148/radiol.212151
[20]   Opt-In and Opt-Out Consent Procedures for the Reuse of Routinely Recorded Health Data in Scientific Research and Their Consequences for Consent Rate and Consent Bias: Systematic Review [J].
de Man, Yvonne ;
Wieland-Jorna, Yvonne ;
Torensma, Bart ;
de Wit, Koos ;
Francke, Anneke L. ;
Oosterveld-Vlug, Mariska G. ;
Verheij, Robert A. .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2023, 25