Strategies for Implementing Machine Learning Algorithms in the Clinical Practice of Radiology

被引:13
作者
Chae, Allison [5 ]
Yao, Michael S. [1 ,5 ]
Sagreiya, Hersh [2 ,5 ]
Goldberg, Ari D. [6 ]
Chatterjee, Neil [2 ]
MacLean, Matthew T. [2 ]
Duda, Jeffrey [2 ]
Elahi, Ameena [7 ]
Borthakur, Arijitt [2 ,5 ,8 ]
Ritchie, Marylyn D. [3 ]
Rader, Daniel [4 ]
Kahn, Charles E. [2 ,5 ]
Witschey, Walter R. [2 ,5 ]
Gee, James C. [2 ,5 ]
机构
[1] Univ Penn, Dept Bioengn, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Genet, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Med, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[5] Univ Penn, Perelman Sch Med, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[6] Loyola Univ, Med Ctr, Dept Radiol, Maywood, IL USA
[7] Univ Penn, Dept Informat Serv, Philadelphia, PA USA
[8] Univ Penn, Leonard Davis Inst Hlth Econ, Philadelphia, PA USA
基金
美国国家卫生研究院;
关键词
ARTIFICIAL-INTELLIGENCE; BIOBANK; QUANTIFICATION;
D O I
10.1148/radiol.223170
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Despite recent advancements in machine learning (ML) applications in health care, there have been few benefits and improvements to clinical medicine in the hospital setting. To facilitate clinical adaptation of methods in ML, this review proposes a standardized framework for the step-by-step implementation of artificial intelligence into the clinical practice of radiology that focuses on three key components: problem identification, stakeholder alignment, and pipeline integration. A review of the recent literature and empirical evidence in radiologic imaging applications justifies this approach and offers a discussion on structuring implementation efforts to help other hospital practices leverage ML to improve patient care. © 2024 Radiological Society of North America Inc.. All rights reserved.
引用
收藏
页数:12
相关论文
共 109 条
[1]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[2]   Mitigating the impact of biased artificial intelligence in emergency decision-making [J].
Adam, Hammaad ;
Balagopalan, Aparna ;
Alsentzer, Emily ;
Christia, Fotini ;
Ghassemi, Marzyeh .
COMMUNICATIONS MEDICINE, 2022, 2 (01)
[3]   2020 ACR Data Science Institute Artificial Intelligence Survey [J].
Allen, Bibb ;
Agarwal, Sheela ;
Coombs, Laura ;
Wald, Christoph ;
Dreyer, Keith .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2021, 18 (08) :1153-1159
[4]  
[Anonymous], 2012, Office of the Associate Director for Program - Program Evaluation
[5]   The Importance of Real-World Validation of Machine Learning Systems in Wearable Exercise Biofeedback Platforms: A Case Study [J].
Argent, Rob ;
Bevilacqua, Antonio ;
Keogh, Alison ;
Daly, Ailish ;
Caulfield, Brian .
SENSORS, 2021, 21 (07)
[6]  
Baek C, 2022, Arxiv, DOI arXiv:2206.13089
[7]   Deep Generative Medical Image Harmonization for Improving Cross-Site Generalization in Deep Learning Predictors [J].
Bashyam, Vishnu M. ;
Doshi, Jimit ;
Erus, Guray ;
Srinivasan, Dhivya ;
Abdulkadir, Ahmed ;
Singh, Ashish ;
Habes, Mohamad ;
Fan, Yong ;
Masters, Colin L. ;
Maruff, Paul ;
Zhuo, Chuanjun ;
Voelzke, Henry ;
Johnson, Sterling C. ;
Fripp, Jurgen ;
Koutsouleris, Nikolaos ;
Satterthwaite, Theodore D. ;
Wolf, Daniel H. ;
Gur, Raquel E. ;
Gur, Ruben C. ;
Morris, John C. ;
Albert, Marilyn S. ;
Grabe, Hans J. ;
Resnick, Susan M. ;
Bryan, Nick R. ;
Wittfeld, Katharina ;
Bulow, Robin ;
Wolk, David A. ;
Shou, Haochang ;
Nasrallah, Ilya M. ;
Davatzikos, Christos .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 55 (03) :908-916
[8]   Reproducibility of prediction models in health services research [J].
Belbasis, Lazaros ;
Panagiotou, Orestis A. .
BMC RESEARCH NOTES, 2022, 15 (01)
[9]  
Boch M, 2022, Information Systems and Technologies. WorldCIST, V469
[10]   The Evolution of a Large Biobank at Mass General Brigham [J].
Boutin, Natalie T. ;
Schecter, Samantha B. ;
Perez, Emma F. ;
Tchamitchian, Natasha S. ;
Cerretani, Xander R. ;
Gainer, Vivian S. ;
Lebo, Matthew S. ;
Mahanta, Lisa M. ;
Karlson, Elizabeth W. ;
Smoller, Jordan W. .
JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (08)