Suppression of Thermoacoustic Instabilities using an Electric Field and Feedback Control

被引:0
作者
Cruise, Dustin [1 ]
Satija, Aman [1 ]
King, Galen B. [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
来源
AIAA SCITECH 2023 FORUM | 2023年
关键词
ACTIVE CONTROL; COMBUSTION INSTABILITY; PREMIXED FLAME; MODEL;
D O I
10.2514/6.2023-0556
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The suppression of a thermoacoustic instability using an electric field and feedback control is reported here. The experimental setup consists of a 3.4 kW methane-air flame mounted in a Rijke tube configuration, creating a thermoacoustic instability at 141 Hz and 134 dBA. The electric field acts through the well-known ionic wind effect to modulate the flame heat-release and is shown to be key to interacting with the thermoacoustic instability. A phase-shift feedback controller is used to apply the electric field to the thermoacoustic instability and the closed-loop system suppresses the instability in less than 60 msec and reduces the peak pressure amplitude by 27 dB. Once stabilized, the electric field requires only 36 mW of electrical power to maintain stabilization. This successful demonstration to the classic thermoacoustic instability problem combined with the low electrical power use shows the promising potential of electric fields as actuators in combustion.
引用
收藏
页数:10
相关论文
共 19 条
[1]   Study of the influence of electric fields on flames using planar LIF and PIV techniques [J].
Altendorfner, Florian ;
Kuhl, Johannes ;
Zigan, Lars ;
Leipertz, Alfred .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2011, 33 :3195-3201
[2]   Active control of combustion instability: Theory and practice [J].
Annaswamy, AM ;
Ghoniem, AF .
IEEE CONTROL SYSTEMS MAGAZINE, 2002, 22 (06) :37-54
[3]  
Banaszuk A, 2000, P AMER CONTR CONF, P416, DOI 10.1109/ACC.2000.878934
[4]   A NOTE ON RAYLEIGH CRITERION [J].
CULICK, FEC .
COMBUSTION SCIENCE AND TECHNOLOGY, 1987, 56 (4-6) :159-166
[5]   Theoretical, and experimental determinations of the transfer function of a laminar premixed flame [J].
Ducruix, S ;
Durox, D ;
Candel, S .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2000, 28 :765-773
[6]  
Englund D. R., 1984, INT INSTR S
[7]   Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results [J].
Fleifil, M ;
Annaswamy, AM ;
Ghoneim, ZA ;
Ghoniem, AF .
COMBUSTION AND FLAME, 1996, 106 (04) :487-510
[8]   DETAILED ION CHEMISTRY IN METHANE-OXYGEN FLAMES .1. POSITIVE-IONS [J].
GOODINGS, JM ;
BOHME, DK ;
NG, CW .
COMBUSTION AND FLAME, 1979, 36 (01) :27-43
[9]   Transient electric field response of laminar premixed flames [J].
Kuhl, Johannes ;
Jovicic, Gordana ;
Zigan, Lars ;
Leipertz, Alfred .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2013, 34 :3303-3310
[10]   Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges [J].
Lacoste, Deanna A. ;
Xiong, Yuan ;
Moeck, Jonas P. ;
Chung, Suk Ho ;
Roberts, William L. ;
Cha, Min Suk .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2017, 36 (03) :4183-4192