Anomalous energy transport in the Berezinskii-Kosterlitz-Thouless phase

被引:0
作者
Hiura, Ken [1 ]
机构
[1] Univ Tokyo, Universal Biol Inst, Tokyo 1130033, Japan
关键词
anomalous heat conduction; BKT phase; fluctuating hydrodynamics; LONG-RANGE ORDER; CONTINUOUS SYMMETRY GROUP; 2-DIMENSIONAL SYSTEMS; THERMAL-CONDUCTIVITY; HAMILTONIAN-DYNAMICS; XY-MODEL; TRANSITIONS; DESTRUCTION; LATTICE;
D O I
10.1088/1742-5468/adcc94
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study nonlinear fluctuating hydrodynamic theories with charge and energy conservation in and above two dimensions that describe the large-scale behavior of the Hamiltonian XY model in the disordered and ordered phases. Using renormalization group analysis at one-loop order, we show that while Fourier's law holds in the ordered phase above two dimensions and in the disordered phase in any dimension, the energy diffusivity in the ordered phase exactly in two dimensions, the Berezinskii-Kosterlitz-Thouless phase, exhibits a logarithmic divergence in the thermodynamic limit. This divergence arises from elastic energy transport induced by spin-wave excitations.
引用
收藏
页数:54
相关论文
共 44 条
[1]   DECAY OF VELOCITY AUTOCORRELATION FUNCTION [J].
ALDER, BJ ;
WAINWRIGHT, TE .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 1 (01) :18-+
[2]   Dynamical field theory for glass-forming liquids, self-consistent resummations and time-reversal symmetry [J].
Andreanov, A. ;
Biroli, G. ;
Lefevre, A. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
[3]   Reexamination of the infrared properties of randomly stirred hydrodynamics [J].
Berera, A. ;
Yoffe, S. R. .
PHYSICAL REVIEW E, 2010, 82 (06)
[4]  
BEREZINSKII VL, 1972, SOV PHYS JETP-USSR, V34, P610
[5]  
BEREZINSKII VL, 1971, SOV PHYS JETP-USSR, V32, P493
[6]   RENORMALIZATION OF NONLINEAR SIGMA-MODEL IN 2+ EPSILON-DIMENSIONS-APPLICATION TO HEISENBERG FERROMAGNETS [J].
BREZIN, E ;
ZINJUSTIN, J .
PHYSICAL REVIEW LETTERS, 1976, 36 (13) :691-694
[7]  
Chaikin P. M., 1995, Principles of condensed matter physics
[8]   Breakdown of Fourier's law in nanotube thermal conductors [J].
Chang, C. W. ;
Okawa, D. ;
Garcia, H. ;
Majumdar, A. ;
Zettl, A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (07)
[9]  
De Dominicis C., 1976, J. Phys. Colloq. France, V37, pC1
[10]  
de Groot S.R., 1969, Non-Equilibrium Thermodynamics