共 31 条
Multi-Label Machine Learning Classification of Cardiovascular Diseases
被引:0
作者:
Yen, Chih-Ta
[1
]
Wong, Jung-Ren
[2
]
Chang, Chia-Hsang
[2
]
机构:
[1] Natl Taiwan Univ Sci & Technol, Grad Inst Automation & Control, Taipei 10607, Taiwan
[2] Natl Taiwan Ocean Univ, Dept Elect Engn, Keelung City 202301, Taiwan
来源:
CMC-COMPUTERS MATERIALS & CONTINUA
|
2025年
/
84卷
/
01期
关键词:
Photoplethysmography;
machine learning;
health management;
multi-label classification;
cardiovascu-lar disease;
D O I:
10.32604/cmc.2025.063389
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
In its 2023 global health statistics, the World Health Organization noted that noncommunicable diseases (NCDs) remain the leading cause of disease burden worldwide, with cardiovascular diseases (CVDs) resulting in more deaths than the three other major NCDs combined. In this study, we developed a method that can comprehensively detect which CVDs are present in a patient. Specifically, we propose a multi-label classification method that utilizes photoplethysmography (PPG) signals and physiological characteristics from public datasets to classify four types of CVDs and related conditions: hypertension, diabetes, cerebral infarction, and cerebrovascular disease. Our approach to multi-disease classification of cardiovascular diseases (CVDs) using PPG signals achieves the highest classification performance when encompassing the broadest range of disease categories, thereby offering a more comprehensive assessment of human health. We employ a multi-label classification strategy to simultaneously predict the presence or absence of multiple diseases. Specifically, we first apply the Savitzky-Golay (S-G) filter to the PPG signals to reduce noise and then transform into statistical features. We integrate processed PPG signals with individual physiological features as a multimodal input, thereby expanding the learned feature space. Notably, even with a simple machine learning method, this approach can achieve relatively high accuracy. The proposed method achieved a maximum F1-score of 0.91, minimum Hamming loss of 0.04, and an accuracy of 0.95. Thus, our method represents an effective and rapid solution for detecting multiple diseases simultaneously, which is beneficial for comprehensively managing CVDs.
引用
收藏
页码:347 / 363
页数:17
相关论文