A niching-based nondominated sorting for multimodal multiobjective optimization with local pareto fronts

被引:1
作者
Deng, Qi [1 ,2 ,3 ]
Zou, Juan [1 ,2 ,3 ]
Yang, Shengxiang [3 ,5 ]
Liu, Yuan [1 ,2 ,3 ]
Yu, Fan [1 ,4 ,6 ]
Xie, Tianbin [1 ,2 ,3 ]
Zheng, Jinhua [1 ,2 ,3 ,4 ]
机构
[1] Xiangtan Univ, Sch Comp Sci, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan, Hunan Province, Peoples R China
[2] Xiangtan Univ, Sch Cyberspace Sci, Xiangtan, Hunan Province, Peoples R China
[3] Xiangtan Univ, Fac Sch Comp Sci, Sch Cyberspace Sci, Xiangtan 411105, Peoples R China
[4] Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang 421002, Peoples R China
[5] De Montfort Univ, Sch Comp Sci & Informat, Leicester LE1 9BH, England
[6] Cent South Univ, Sch Traff & Transport Engn, Changsha, Peoples R China
关键词
Multimodal multiobjective optimization; problems; Local Pareto optimal solutions; Nondominated layer; EVOLUTIONARY ALGORITHM; PERFORMANCE;
D O I
10.1016/j.asoc.2025.113223
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In multimodal multiobjective optimization problems (MMOPs), there may be local Pareto optimal solutions (PSs). Finding both global PS and local PS simultaneously can provide additional options for decision makers. However, since individuals on the global Pareto front (PF) dominate individuals on the local PF, traditional multimodal multiobjective evolutionary algorithms (MMEAs) cannot effectively handle MMOPs with local PF (MMOPLs). In this paper, we improve our previous dynamic-niching-based Pareto domination (DNPD) approach to search for local Pareto optimal solutions. The new version is called niching-based non-dominated sorting (NNSL). There are two improvements to NNSL. First, the dynamic niche is changed to a fixed niche increase the diversity of the population. Second, individuals with poor convergence in the non-dominated layer are deleted to ensure the convergence of the population. NNSL can be combined with Pareto dominance-based algorithms. We apply NNSL to solve MMOPLs (MMF_e and IDMP_e series). Experiments show that NNSL help traditional MMEAs find global PF/PS and local PF/PS simultaneously.
引用
收藏
页数:15
相关论文
共 49 条
[1]   HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization [J].
Bader, Johannes ;
Zitzler, Eckart .
EVOLUTIONARY COMPUTATION, 2011, 19 (01) :45-76
[2]   Induction motor design for electric vehicle using a niching genetic algorithm [J].
Cho, DH ;
Jung, HK ;
Lee, CG .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2001, 37 (04) :994-999
[3]   A decomposition-based many-objective evolutionary algorithm updating weights when required [J].
de Farias, Lucas R. C. ;
Araujo, Aluizio F. R. .
SWARM AND EVOLUTIONARY COMPUTATION, 2022, 68
[4]   Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization [J].
Deb, Kalyanmoy ;
Tiwari, Santosh .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 185 (03) :1062-1087
[5]   Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems [J].
Deb, Kalyanmoy .
EVOLUTIONARY COMPUTATION, 1999, 7 (03) :205-230
[6]   A repulsive-distance-based maximum diversity selection algorithm for multimodal multiobjective optimization [J].
Deng, Qi ;
Liu, Yuan ;
Yang, Shengxiang ;
Zou, Juan ;
Li, Xijun ;
Xia, Yizhang ;
Zheng, Jinhua .
APPLIED SOFT COMPUTING, 2025, 169
[7]   Large-scale multimodal multiobjective evolutionary optimization based on hybrid hierarchical clustering [J].
Ding, Zhuanlian ;
Cao, Lve ;
Chen, Lei ;
Sun, Dengdi ;
Zhang, Xingyi ;
Tao, Zhifu .
KNOWLEDGE-BASED SYSTEMS, 2023, 266
[8]   Evolutionary Multiobjective Blocking Lot-Streaming Flow Shop Scheduling With Machine Breakdowns [J].
Han, Yuyan ;
Gong, Dunwei ;
Jin, Yaochu ;
Pan, Quanke .
IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (01) :184-197
[9]   A niching backtracking search algorithm with adaptive local search for multimodal multiobjective optimization [J].
Hu, Zhongbo ;
Zhou, Ting ;
Su, Qinghua ;
Liu, Mianfang .
SWARM AND EVOLUTIONARY COMPUTATION, 2022, 69
[10]   A Niching Memetic Algorithm for Multi-Solution Traveling Salesman Problem [J].
Huang, Ting ;
Gong, Yue-Jiao ;
Kwong, Sam ;
Wang, Hua ;
Zhang, Jun .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (03) :508-522