Non-Invasive Multiclass Diabetes Classification Using Breath Biomarkers and Machine Learning with Explainable AI

被引:0
作者
Gudino-Ochoa, Alberto [1 ,2 ]
Garcia-Rodriguez, Julio Alberto [1 ,3 ]
Ochoa-Ornelas, Raquel [4 ]
Ruiz-Velazquez, Eduardo [2 ]
Uribe-Toscano, Sofia [5 ]
Cuevas-Chavez, Jorge Ivan [2 ]
Sanchez-Arias, Daniel Alejandro [2 ]
机构
[1] Tecnol Nacl Mexico, Inst Tecnol Ciudad Guzman, Elect Dept, Ciudad Guzman 49100, Jalisco, Mexico
[2] Univ Guadalajara, Ctr Univ Ciencias Exactas Ingn CUCEI, Elect & Comp Div, Guadalajara 44430, Jalisco, Mexico
[3] Univ Guadalajara, Ctr Univ CUSUR, Dept Ciencias Computac Innovac Tecnol, Ciudad Guzman 49000, Jalisco, Mexico
[4] Tecnol Nacl Mexico, Inst Tecnol Ciudad Guzman, Syst & Computat Dept, Ciudad Guzman 49100, Jalisco, Mexico
[5] Univ Guadalajara, Ctr Univ CUSUR, Dept Ciencias Clin, Div Ciencias Salud, Av Enrique Arreola Silva 883, Ciudad Guzman 49000, Jalisco, Mexico
来源
DIABETOLOGY | 2025年 / 6卷 / 06期
关键词
breath acetone; diabetes classification; machine learning; breath biomarkers; medical expert systems; exhaled breath analysis; DIAGNOSIS;
D O I
10.3390/diabetology6060051
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background/Objectives: The increasing prevalence of diabetes underscores the urgent need for non-invasive, rapid, and cost-effective diagnostic alternatives. This study presents a breath-based multiclass diabetes classification system leveraging only three gas sensors (CO, alcohol, and acetone) to analyze exhaled breath composition. Methods: Breath samples were collected from 58 participants (22 healthy, 7 prediabetic, and 29 diabetic), with blood glucose levels serving as the reference metric. To enhance classification performance, we introduced a novel biomarker, the alcohol-to-acetone ratio, through a feature engineering approach. Class imbalance was addressed using the Synthetic Minority Over-Sampling Technique (SMOTE), ensuring a balanced dataset for model training. A nested cross-validation framework with 3 outer and 3 inner folds was implemented. Multiple machine learning classifiers were evaluated, with Random Forest and Gradient Boosting emerging as the top-performing models. Results: An ensemble combining both yielded the highest overall performance, achieving an average accuracy of 98.86%, precision of 99.07%, recall of 98.81% and F1 score of 98.87%. These findings highlight the potential of gas sensor-based breath analysis as a highly accurate, scalable, and non-invasive method for diabetes screening. Conclusions: The proposed system offers a promising alternative to blood-based diagnostic approaches, paving the way for real-world applications in point-of-care diagnostics and continuous health monitoring.
引用
收藏
页数:21
相关论文
共 45 条
[31]   The effect of high ethanol concentration on E-nose response for diabetes detection in exhaled breath: Laboratory studies [J].
Paleczek, Anna ;
Rydosz, Artur .
SENSORS AND ACTUATORS B-CHEMICAL, 2024, 408
[32]   Review of the algorithms used in exhaled breath analysis for the detection of diabetes [J].
Paleczek, Anna ;
Rydosz, Artur .
JOURNAL OF BREATH RESEARCH, 2022, 16 (02)
[33]   Artificial Breath Classification Using XGBoost Algorithm for Diabetes Detection [J].
Paleczek, Anna ;
Grochala, Dominik ;
Rydosz, Artur .
SENSORS, 2021, 21 (12)
[34]  
Pradeepa R., 2024, Chronic Complications of Diabetes Mellitus, P11, DOI [10.1016/B978-0-323-88426-6.00006-3, DOI 10.1016/B978-0-323-88426-6.00006-3]
[35]   Risk of Prediabetes and Diabetes in Oral Lichen Planus: A Case-Control Study according to Current Diagnostic Criteria [J].
Rodriguez-Fonseca, Lucia ;
Llorente-Pendas, Santiago ;
Garcia-Pola, Maria .
DIAGNOSTICS, 2023, 13 (09)
[36]   Breath Analysis for the In Vivo Detection of Diabetic Ketoacidosis [J].
Sha, Mizaj Shabil ;
Maurya, Muni Raj ;
Shafath, Sadiyah ;
Cabibihan, John-John ;
Al-Ali, Abdulaziz ;
Malik, Rayaz A. ;
Sadasivuni, Kishor Kumar .
ACS OMEGA, 2022, 7 (05) :4257-4266
[37]   An Efficient Dual-Hierarchy t-SNE Minimization [J].
van de Ruit, Mark ;
Billeter, Markus ;
Eisemann, Elmar .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (01) :614-622
[38]  
Wang Y.C., 2023, Healthc. Anal, V3, DOI DOI 10.1016/J.HEALTH.2023.100183
[39]   A preliminary screening system for diabetes based on in-car electronic nose [J].
Weng, Xiaohui ;
Li, Gehong ;
Liu, Ziwei ;
Liu, Rui ;
Liu, Zhaoyang ;
Wang, Songyang ;
Zhao, Shishun ;
Ma, Xiaotong ;
Chang, Zhiyong .
ENDOCRINE CONNECTIONS, 2023, 12 (03)
[40]   Rapid and non-invasive diagnosis of type 2 diabetes through sniffing urinary acetone by a proton transfer reaction mass spectrometry [J].
Xu, Wei ;
Zou, Xue ;
Ding, Houwen ;
Ding, Yueting ;
Zhang, Jin ;
Liu, Wenting ;
Gong, Tingting ;
Nie, Zhengchao ;
Yang, Min ;
Zhou, Qiang ;
Liu, Zhou ;
Ge, Dianlong ;
Zhang, Qiangling ;
Huang, Chaoqun ;
Shen, Chengyin ;
Chu, Yannan .
TALANTA, 2023, 256