Heat kernel bounds and Cheng-Yau type estimate for the Laplace-Beltrami operator with Bakry-Émery Ricci curvature lower bound

被引:0
作者
Song, Xingyu [1 ,2 ]
Wu, Ling [3 ]
Zhu, Meng [1 ,2 ]
机构
[1] East China Normal Univ, Sch Math Sci, Key Lab MEA, Minist Educ, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
[3] Yancheng Teachers Univ, Sch Math & Stat, 50 Kaifang Ave, Yancheng 224002, Peoples R China
关键词
LIOUVILLE THEOREMS; MANIFOLDS; COMPACTNESS; UNIQUENESS; GEOMETRY; SOBOLEV; FLOWS;
D O I
10.1016/j.jde.2025.113439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On complete Riemannian manifolds with Bakry-& Eacute;mery Ricci curvature bounded below, we first derive a parabolic Harnack inequality for positive solutions of the heat equation and Gaussian upper and lower bounds of the heat kernel for the Laplace-Beltrami operator. As applications of the heat kernel estimates, an L1-Liouville theorem for non-negative subharmonic functions and lower bounds of the Dirichlet eigenvalues are shown. Finally, we prove Cheng-Yau type local gradient estimates for positive harmonic functions and Dirichlet and Neumann eigenfunctions. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:51
相关论文
共 52 条
[21]   LP AND MEAN-VALUE PROPERTIES OF SUBHARMONIC FUNCTIONS ON RIEMANNIAN-MANIFOLDS [J].
LI, P ;
SCHOEN, R .
ACTA MATHEMATICA, 1984, 153 (3-4) :279-301
[22]  
LI P, 1984, J DIFFER GEOM, V20, P447, DOI 10.4310/jdg/1214439287
[23]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[24]  
Li P., 2012, Geometric Analysis, V134
[25]   Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds [J].
Li, XD .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (10) :1295-1361
[26]   Perelman's entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry-Emery Ricci curvature [J].
Li, Xiang-Dong .
MATHEMATISCHE ANNALEN, 2012, 353 (02) :403-437
[27]   Li-Yau-Hamilton estimates and Bakry-Emery-Ricci curvature [J].
Li, Yi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 113 :1-32
[28]   Heat kernel on Ricci shrinkers (II) [J].
Li, Yu ;
Wang, Bing .
ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) :1639-1695
[29]   Heat kernel on Ricci shrinkers [J].
Li, Yu ;
Wang, Bing .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (06)
[30]   Stable weighted minimal surfaces in manifolds with non-negative Bakry-Emery Ricci tensor [J].
Liu, Gang .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2013, 21 (05) :1061-1079