Heat kernel bounds and Cheng-Yau type estimate for the Laplace-Beltrami operator with Bakry-Émery Ricci curvature lower bound

被引:0
作者
Song, Xingyu [1 ,2 ]
Wu, Ling [3 ]
Zhu, Meng [1 ,2 ]
机构
[1] East China Normal Univ, Sch Math Sci, Key Lab MEA, Minist Educ, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
[3] Yancheng Teachers Univ, Sch Math & Stat, 50 Kaifang Ave, Yancheng 224002, Peoples R China
关键词
LIOUVILLE THEOREMS; MANIFOLDS; COMPACTNESS; UNIQUENESS; GEOMETRY; SOBOLEV; FLOWS;
D O I
10.1016/j.jde.2025.113439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On complete Riemannian manifolds with Bakry-& Eacute;mery Ricci curvature bounded below, we first derive a parabolic Harnack inequality for positive solutions of the heat equation and Gaussian upper and lower bounds of the heat kernel for the Laplace-Beltrami operator. As applications of the heat kernel estimates, an L1-Liouville theorem for non-negative subharmonic functions and lower bounds of the Dirichlet eigenvalues are shown. Finally, we prove Cheng-Yau type local gradient estimates for positive harmonic functions and Dirichlet and Neumann eigenfunctions. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:51
相关论文
共 52 条
[1]  
Bakry D., 1985, SEMINAIRE PROBABILIT, V1123, P177
[2]  
BAKRY D, 2005, THETA SER ADV MATH, V4, P115
[3]   Convergence of Ricci flows with bounded scalar curvature [J].
Bamler, Richard H. .
ANNALS OF MATHEMATICS, 2018, 188 (03) :753-831
[4]  
BUSER P, 1982, ANN SCI ECOLE NORM S, V15, P213
[5]  
Cao HD, 2010, J DIFFER GEOM, V85, P175, DOI 10.4310/jdg/1287580963
[6]   Eigenvalue Estimates on Bakry-Emery Manifolds [J].
Charalambous, Nelia ;
Lu, Zhiqin ;
Rowlett, Julie .
ELLIPTIC AND PARABOLIC EQUATIONS, 2015, 119 :45-61
[7]  
CHEEGER J, 1982, J DIFFER GEOM, V17, P15
[8]  
Chen BL, 2009, J DIFFER GEOM, V82, P363, DOI 10.4310/jdg/1246888488
[9]  
Chen XX, 2020, J DIFFER GEOM, V116, P1, DOI 10.4310/jdg/1599271253
[10]   ON THE UPPER ESTIMATE OF THE HEAT KERNEL OF A COMPLETE RIEMANNIAN MANIFOLD [J].
CHENG, SY ;
LI, P ;
YAU, ST .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (05) :1021-1063