ON CONFORMABLE FRACTIONAL NEWTON-TYPE INEQUALITIES

被引:1
作者
Xu, Hongyan [1 ]
Awan, Muhammad uzair [2 ,7 ]
Meftah, Badreddine [3 ]
Jarad, Fahd [4 ,5 ]
Lakhdari, Abdelghani [6 ,7 ]
机构
[1] Suqian Univ Suqian, Dept Math & Phys, Jiangsu 223800, Peoples R China
[2] Govt Coll Univ Gurunanakpura, Dept Math, Faisalabad 38000, Pakistan
[3] Univ 8 Mai 1945 Guelma, Fac MISM, Dept Math, Lab Anal & Control Differential Equat ACED, PO Box 401, Guelma 24000, Algeria
[4] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06790 Ankara, Turkiye
[5] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat, Masjid Al Aqsa St, Mubarak Al Abdullah, Kuwait
[6] Kocaeli Univ, Fac Sci & Arts, Dept Math, Umuttepe Campus, Kocaeli 41001, Turkiye
[7] Natl Higher Sch Technol & Engn, Dept CPST, Annaba 23005, Algeria
关键词
Conformable Fractional Integral Operators; Simpson; 3/8; Inequalities; H & ouml; lder Inequality; Power Mean Inequality; Convex Functions; OSTROWSKI TYPE INEQUALITIES; TRAPEZOID-TYPE INEQUALITIES; HADAMARD TYPE INEQUALITIES; S-CONVEX; 1ST DERIVATIVES; SIMPSONS TYPE; INTEGRALS; PREINVEX;
D O I
10.1142/S0218348X25500458
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using a parametrized analysis, this paper presents a study that focuses on examining both the Simpson's 3/8 formula and the corrected Simpson's 3/8 formula. By utilizing a unique identity that incorporates conformable fractional integral operators, we have constructed novel conformable Newton-type inequalities for functions that possess second-order s-convex derivatives. Special cases are extensively discussed, and the accuracy of the results is validated through a numerical example with graphical representations.
引用
收藏
页数:16
相关论文
共 40 条
[1]  
Akdemir AO, 2017, J NONLINEAR CONVEX A, V18, P661
[2]   Some new parameterized Newton-type inequalities for differentiable functions via fractional integrals [J].
Ali, Muhammad Aamir ;
Goodrich, Christopher S. S. ;
Budak, Huseyin .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
[3]   Modeling the dynamic of COVID-19 with different types of transmissions [J].
Amouch, Mohamed ;
Karim, Noureddine .
CHAOS SOLITONS & FRACTALS, 2021, 150
[4]   Refinement of the general form of the two-point quadrature formulas via convexity [J].
Benchettah, D. C. ;
Lakhdari, A. ;
Meftah, B. .
JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2023, 19 (01) :93-101
[5]  
Breckner W. W., 1978, Publ. Inst. Math., V23, P13
[6]   SOME HERMITE-JENSEN-MERCER LIKE INEQUALITIES FOR CONVEX FUNCTIONS THROUGH A CERTAIN GENERALIZED FRACTIONAL INTEGRALS AND RELATED RESULTS [J].
Butt, Saad Ihsan ;
Akdemir, Ahmet Ocak ;
Nasir, Jamshed ;
Jarad, Fahd .
MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) :689-715
[7]   Some New Inequalities of Simpson's Type for s-convex Functions via Fractional Integrals [J].
Chen, Jianhua ;
Huang, Xianjiu .
FILOMAT, 2017, 31 (15) :4989-4997
[8]  
Chen L., 2018, J. Comput. Anal. Appl., V24, P243
[9]   Fundamental solutions to electrical circuits of non-integer order via fractional derivatives with and without singular kernels [J].
Gomez-Aguilar, J. F. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (05)
[10]   Simpson-Type Inequalities for Conformable Fractional Operators Concerning Twice-Differentiable Functions [J].
Hezenci, F. ;
Budak, H. .
JOURNAL OF MATHEMATICAL EXTENSION, 2023, 17 (03)