Weakening Lithium-Ion Coordination in Poly(Ethylene Oxide)-Based Solid Polymer Electrolytes for High Performance Solid-State Batteries

被引:4
作者
Chang, Ruirui [1 ]
Liu, Yingkang [1 ]
Zhang, Yaguang [1 ]
Shi, Yunyu [1 ]
Tang, Jingjing [1 ]
Xu, Zheng-Long [2 ]
Zhou, Xiangyang [1 ]
Yang, Juan [1 ,3 ,4 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
[2] Hong Kong Polytech Univ, Res Inst Adv Mfg, Dept Ind & Syst Engn, Hung Hom, Hong Kong 999077, Peoples R China
[3] Cent South Univ, Engn Res Ctr, Sch Met & Environm, Minist Educ Adv Battery Mat, Changsha 410083, Hunan, Peoples R China
[4] Hunan Prov Key Lab Nonferrous Value Added Met, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
ambient-temperature operation; compression-free solid-state batteries; crystallinity; weakened coordination; ELECTROCHEMICAL PROPERTIES; PEO; CONDUCTIVITY; TRANSPORT; MECHANISM; COMPLEXES; BEHAVIOR;
D O I
10.1002/aenm.202405906
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The high crystallinity of poly(ethylene oxide)-based solid polymer electrolytes (PEO-based SPEs) is viewed as a key barrier to their ambient-temperature performance. Conventional approaches to mitigate crystallinity necessitate elevated operation temperatures of 50-60 degrees C. Interestingly, this work indicates that the predominant factor limiting ambient-temperature performance is the robust coordination between lithium-ion (Li+) and ether oxygen (EO), rather than the crystallinity. By rationally tailoring the Li+ concentration, this work effectively weakens the coordination strength, thereby enhancing the ambient-temperature electrochemical performance. An optimal SPE with EO: Li ratio of 9:1 exhibits remarkable ionic conductivity (1.76 x 10-4 S cm-1 at 35 degrees C), a high Li+ transference number (0.486 at 35 degrees C), and superior adhesion to electrodes in compression-free pouch cells. The practical feasibility of the SPE is demonstrated in solid-state Li-LiFePO4 cells achieving a specific capacity of 149.66 mAh g-1 at 0.1 C and 35 degrees C and 90.5% capacity retention over 100 cycles. The electrolyte also exhibits compatibility with high-voltage cathodes of LiNi0.6Co0.2Mn0.2O2 and LiNi0.8Co0.1Mn0.1O2 for high-energy Li-metal batteries. These new insights shed light on the rational regulation of SPEs in advanced solid-state batteries.
引用
收藏
页数:16
相关论文
共 89 条
[1]   Cation-Assisted Lithium-Ion Transport for High-Performance PEO-based Ternary Solid Polymer Electrolytes [J].
Atik, Jaschar ;
Diddens, Diddo ;
Thienenkamp, Johannes Helmut ;
Brunklaus, Gunther ;
Winter, Martin ;
Paillard, Elie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (21) :11919-11927
[2]   CONTACT ION-PAIR FORMATION AND ETHER OXYGEN COORDINATION IN THE POLYMER ELECTROLYTES M[N(CF3SO2)(2)](2)PEO(N) FOR M=MG, CA, SR AND BA [J].
BAKKER, A ;
GEJJI, S ;
LINDGREN, J ;
HERMANSSON, K ;
PROBST, MM .
POLYMER, 1995, 36 (23) :4371-4378
[3]   Vibrational and impedance spectroscopic analyses of semi-interpenetrating polymer networks as solid polymer electrolytes [J].
Bar, Nimai ;
Basak, Pratyay ;
Tsur, Yoed .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (22) :14615-14624
[4]   Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations [J].
Borodin, O ;
Smith, GD .
MACROMOLECULES, 2006, 39 (04) :1620-1629
[5]  
Bouchet R, 2013, NAT MATER, V12, P452, DOI [10.1038/nmat3602, 10.1038/NMAT3602]
[6]   Dendritic growth mechanisms in lithium/polymer cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF POWER SOURCES, 1999, 81 :925-929
[7]   POLYMER ELECTROLYTES [J].
BRUCE, PG ;
VINCENT, CA .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1993, 89 (17) :3187-3203
[8]   In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries [J].
Chai, Jingchao ;
Liu, Zhihong ;
Ma, Jun ;
Wang, Jia ;
Liu, Xiaochen ;
Liu, Haisheng ;
Zhang, Jianjun ;
Cui, Guanglei ;
Chen, Liquan .
ADVANCED SCIENCE, 2017, 4 (02)
[9]   PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic" [J].
Chen, Long ;
Li, Yutao ;
Li, Shuai-Peng ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Goodenough, John B. .
NANO ENERGY, 2018, 46 :176-184
[10]   (Oxalato)borate: The key ingredient for polyethylene oxide based composite electrolyte to achieve ultra-stable performance of high voltage solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal battery [J].
Cheng, Samson Ho-Sum ;
Liu, Chen ;
Zhu, Fangyan ;
Zhao, Liang ;
Fan, Rong ;
Chung, Chi-Yuen ;
Tang, Jiaoning ;
Zeng, Xierong ;
He, Yan-Bing .
NANO ENERGY, 2021, 80