Deep Learning-Enhanced Laser-Induced Breakdown Spectroscopy for Rapid In-Situ Analysis of Martian Surface and Atmospheric Constituents

被引:0
作者
Wu, Tianzhuang [1 ,2 ,3 ]
Zhai, Ruoyu [1 ,2 ,3 ]
Huang, Junzhe [1 ,2 ,3 ]
Wang, Ziwei [1 ,2 ,3 ]
Han, Boyuan [1 ,2 ,3 ]
Liu, Yuzhu [1 ,2 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, State Key Lab Cultivat Base Atmospher Optoelect De, Nanjing, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Jiangsu Int Joint Lab Meteorol Photon & Optoelect, Nanjing, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Jiangsu Engn Res Ctr Intelligent Optoelect Sensing, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; LIBS; Martian surface material; the Zhurong rover;
D O I
10.1002/mop.70273
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The integration of laser-induced breakdown spectroscopy (LIBS) with deep learning algorithms presents great potential for autonomous planetary exploration. This study utilized data from the Zhurong rover to achieve spectral assignment for Martian sands, soil, and rocks. The Titanium alloy Ti-6Al-4V (TC4) based calibration strategy successfully achieves the spectral assignment of Martian atmospheric and contrast Martian and Earth spectra, distinguishing oxygen/carbon contributions. To overcome limited extraterrestrial data, we introduced the Principal Component Analysis-based Augmentation (PCA-Aug) for spectral data diversity expansion while preserving the intrinsic feature of the data. Two innovative architectures, the Lightweight Spectral Convolutional Neural Network (LS-CNN) and the Grid-Form Implicit Graph Network (GIGN), have demonstrated superior performance compared to conventional Convolutional Neural Networks (CNNs), with LS-CNN achieving a mean accuracy of 96.30% and GIGN achieving 92.59% across 10 independent training runs. These values represent consistent performance improvements of 18.4% (LS-CNN) and 13.6% (GIGN) over traditional CNNs. This study establishes LIBS as a dual-capability technique for simultaneous Martian material classification and atmospheric composition analysis, providing a critical methodology to enhance the scientific return of current and near-term Mars exploration missions.
引用
收藏
页数:7
相关论文
共 28 条
[1]  
[Anonymous], NIST Chemistry WebBook, SRD 69
[2]   ATMOSPHERE OF MARS [J].
BARTH, CA .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 1974, 2 :333-367
[3]   Metal additive manufacturing in aerospace: A review [J].
Blakey-Milner, Byron ;
Gradl, Paul ;
Snedden, Glen ;
Brooks, Michael ;
Pitot, Jean ;
Lopez, Elena ;
Leary, Martin ;
Berto, Filippo ;
du Plessis, Anton .
MATERIALS & DESIGN, 2021, 209
[4]   Quantitative analysis modeling for the ChemCam spectral data based on laser-induced breakdown spectroscopy using convolutional neural network [J].
Cao, Xueqiang ;
Zhang, Li ;
Wu, Zhongchen ;
Ling, Zongcheng ;
Li, Jialun ;
Guo, Kaichen .
PLASMA SCIENCE & TECHNOLOGY, 2020, 22 (11)
[5]   Rapid ppb-Level Methane Detection Based on Quartz-Enhanced Photoacoustic Spectroscopy [J].
Chen, Yanjun ;
Ma, Hanxu ;
Qiao, Shunda ;
He, Ying ;
Fang, Chao ;
Li, Qi ;
Zhou, Sheng ;
Ma, Yufei .
ANALYTICAL CHEMISTRY, 2025, 97 (12) :6780-6787
[6]   In-situ detection of sulfur in the atmosphere via laser-induced breakdown spectroscopy and single particle aerosol mass spectrometry technology [J].
Chen, Yu ;
Zhang, Qihang ;
Zhangcheng, Yuanzhe ;
Liu, Yuzhu ;
Zhuo, Zeming ;
Li, Lei .
OPTICS AND LASER TECHNOLOGY, 2022, 145
[7]   Superpixelwise PCA based data augmentation for hyperspectral image classification [J].
Gao, Shang ;
Jiang, Xinwei ;
Zhang, Yongshan ;
Liu, Xiaobo ;
Xiong, Qianjin ;
Cai, Zhihua .
MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (34) :81209-81229
[8]   A novel system for precise identification and explainability analysis based on multimodal learning combining laser-induced breakdown spectroscopy and laser-induced plasma acoustic signals [J].
Gao, Wenhan ;
Han, Boyuan ;
Sun, Zhuoyi ;
Yan, Yihui ;
Ye, Yanpeng ;
Feng, Jun ;
Cai, Yuyao ;
Iroshan, Asiri ;
Liu, Yuzhu .
TALANTA, 2025, 293
[9]   Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars [J].
Grotzinger, J. P. ;
Gupta, S. ;
Malin, M. C. ;
Rubin, D. M. ;
Schieber, J. ;
Siebach, K. ;
Sumner, D. Y. ;
Stack, K. M. ;
Vasavada, A. R. ;
Arvidson, R. E. ;
Calef, F., III ;
Edgar, L. ;
Fischer, W. F. ;
Grant, J. A. ;
Griffes, J. ;
Kah, L. C. ;
Lamb, M. P. ;
Lewis, K. W. ;
Mangold, N. ;
Minitti, M. E. ;
Palucis, M. ;
Rice, M. ;
Williams, R. M. E. ;
Yingst, R. A. ;
Blake, D. ;
Blaney, D. ;
Conrad, P. ;
Crisp, J. ;
Dietrich, W. E. ;
Dromart, G. ;
Edgett, K. S. ;
Ewing, R. C. ;
Gellert, R. ;
Hurowitz, J. A. ;
Kocurek, G. ;
Mahaffy, P. ;
McBride, M. J. ;
McLennan, S. M. ;
Mischna, M. ;
Ming, D. ;
Milliken, R. ;
Newsom, H. ;
Oehler, D. ;
Parker, T. J. ;
Vaniman, D. ;
Wiens, R. C. ;
Wilson, S. A. .
SCIENCE, 2015, 350 (6257)
[10]  
Ground Research and Application System of China's Lunar and Planetary Exploration Program, 2020, Mars Surface Composition Detector Dataset