Quantum information in Riemannian spaces

被引:0
作者
Camara, Pablo G. [1 ]
机构
[1] Univ Penn, 3700 Hamilton Walk, Philadelphia, PA 19104 USA
关键词
deformation quantization; entropic uncertainty relations; continuous-variable quantum information; CURVED SPACES; WIGNER FUNCTIONS; MECHANICS; ENTROPY; REPRESENTATION; QUANTIZATION; MODEL;
D O I
10.1088/1751-8121/add820
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a diffeomorphism-invariant formulation of differential entropy for Riemannian spaces, providing a fine-grained, coordinate-independent notion of quantum information for continuous variables in physical space. To this end, we consider the generalization of the Wigner quasiprobability density function to arbitrary Riemannian manifolds and analytically continue Shannon's differential entropy to account for contributions from intermediate virtual quantum states. We illustrate the framework by computing the quantum phase-space entropy of harmonic oscillator energy eigenstates in both Minkowski and anti-de Sitter geometries. Furthermore, we derive a generalized entropic uncertainty relation, extending the Bialynicki-Birula and Mycielski inequality to curved backgrounds. By bridging concepts from information theory, differential geometry, and quantum physics, our work provides a systematic approach to studying continuous-variable quantum information in curved spaces.
引用
收藏
页数:23
相关论文
共 56 条
[1]  
Nielsen MA, 2005, Arxiv, DOI arXiv:quant-ph/0502070
[2]   Continuous Variable Quantum Information: Gaussian States and Beyond [J].
Adesso, Gerardo ;
Ragy, Sammy ;
Lee, Antony R. .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2014, 21 (1-2)
[3]  
AGARWAL GS, 1981, PHYS REV A, V24, P2889, DOI 10.1103/PhysRevA.24.2889
[4]   Wigner functions for curved spaces. II. On spheres [J].
Alonso, MA ;
Pogosyan, GS ;
Wolf, KB .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (04) :1472-1489
[5]   Wigner functions for curved spaces. I. On hyperboloids [J].
Alonso, MA ;
Pogosyan, GS ;
Wolf, KB .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) :5857-5871
[6]  
Amari SI, 2016, APPL MATH SCI, V194, P1, DOI 10.1007/978-4-431-55978-8
[7]   INEQUALITIES IN FOURIER-ANALYSIS ON RN [J].
BECKNER, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1975, 72 (02) :638-641
[8]   UNCERTAINTY RELATIONS FOR INFORMATION ENTROPY IN WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) :129-132
[9]  
Billingsley P., 2017, Probability and measure
[10]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577