Confocal Raman Microscopy with Adaptive Optics

被引:0
作者
Munoz-Bolanos, Juan David [1 ]
Rajaeipour, Pouya [2 ]
Kummer, Kai [3 ]
Kress, Michaela [3 ]
Ataman, Caglar [4 ]
Ritsch-Marte, Monika [1 ]
Jesacher, Alexander [1 ]
机构
[1] Med Univ Innsbruck, Inst Biomed Phys, A-6020 Innsbruck, Austria
[2] Phaseform GmbH, D-79110 Freiburg, Germany
[3] Med Univ Innsbruck, Inst Physiol, A-6020 Innsbruck, Austria
[4] Univ Freiburg, Dept Microsyst Engn, Microsyst Biomed Imaging Lab, D-79110 Freiburg, Germany
基金
奥地利科学基金会;
关键词
Raman; adaptiveoptics; deep; correction; aberration; ABERRATION CORRECTION; SPECTROSCOPY; SCATTERING;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Confocal Raman microscopy, a highly specific and label-free technique for the microscale study of thick samples, often presents difficulties due to weak Raman signals. Inhomogeneous samples introduce wavefront aberrations that further reduce these signals, requiring even longer acquisition times. In this study, we introduce Adaptive Optics to confocal Raman microscopy for the first time to counteract such aberrations, significantly increasing the Raman signal and image quality. The method is designed to integrate seamlessly with existing commercial microscopes without hardware modifications. It uses a wavefront sensorless approach to measure aberrations using an optofluidic, transmissive spatial light modulator that can be attached to the microscope nosepiece. Our experimental results demonstrate the compensation of aberrations caused by artificial scatterers and mouse brain tissue, improving spatial resolution and achieving up to 3.5-fold signal enhancements. Our results provide a basis for the molecular label-free study of biological systems at greater imaging depths.
引用
收藏
页码:176 / 184
页数:9
相关论文
共 40 条
[1]   Hemoglobin and cytochrome c. reinterpreting the origins of oxygenation and oxidation in erythrocytes and in vivo cancer lung cells [J].
Abramczyk, Halina ;
Surmacki, Jakub Maciej ;
Kopec, Monika ;
Jarczewska, Karolina ;
Romanowska-Pietrasiak, Beata .
SCIENTIFIC REPORTS, 2023, 13 (01)
[2]   Redox Imbalance and Biochemical Changes in Cancer by Probing Redox-Sensitive Mitochondrial Cytochromes in Label-Free Visible Resonance Raman Imaging [J].
Abramczyk, Halina ;
Brozek-Pluska, Beata ;
Kopec, Monika ;
Surmacki, Jakub ;
Blaszczyk, Maciej ;
Radek, Maciej .
CANCERS, 2021, 13 (05) :1-20
[3]   Adaptive optics: principles and applications in ophthalmology [J].
Akyol, Engin ;
Hagag, Ahmed M. ;
Sivaprasad, Sobha ;
Lotery, Andrew J. .
EYE, 2021, 35 (01) :244-264
[4]   Sensitivity analysis of Raman endoscopy with and without wavefront shaping [J].
Amitonova, Lyubov, V ;
de Boer, Johannes F. .
OPTICS EXPRESS, 2020, 28 (03) :3779-3788
[5]  
Babcock H., 1953, Publ. Astron. Soc. Pac, V65, P229, DOI DOI 10.1086/126606
[6]   Adaptive optical microscopy: the ongoing quest for a perfect image [J].
Booth, Martin J. .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e165-e165
[8]   Aberration correction for confocal imaging in refractive-index-mismatched media [J].
Booth, MJ ;
Neil, MAA ;
Wilson, T .
JOURNAL OF MICROSCOPY, 1998, 192 :90-98
[9]   Direct measurement of Zernike aberration modes with a modal wavefront sensor [J].
Booth, MJ .
ADVANCED WAVEFRONT CONTROL: METHODS, DEVICES, AND APPLICATIONS, 2003, 5162 :79-90
[10]   Adaptive aberration correction in a confocal microscope [J].
Booth, MJ ;
Neil, MAA ;
Juskaitis, R ;
Wilson, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :5788-5792