ROBUST SINGLE-PARTICLE CRYO-EM IMAGE DENOISING AND RESTORATION

被引:1
作者
Zhang, Jing [1 ,2 ]
Zhao, Tengfei [1 ]
Hu, Shiyu [1 ]
Zhao, Xin [2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing, Peoples R China
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024 | 2024年
关键词
Singe particle cryo-electron microscopy; image denoising; image restoration; diffusion model;
D O I
10.1109/ICASSP48485.2024.10447135
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Cryo-electron microscopy (cryo-EM) has achieved nearatomic level resolution of biomolecules by reconstructing 2D micrographs. However, the resolution and accuracy of the reconstructed particles are significantly reduced due to the extremely low signal-to-noise ratio (SNR) and complex noise structure of cryo-EM images. In this paper, we introduce a diffusion model with post-processing framework to effectively denoise and restore single particle cryo-EM images. Our method outperforms the state-of-the-art (SOTA) denoising methods by effectively removing structural noise that has not been addressed before. Additionally, more accurate and high-resolution three-dimensional reconstruction structures can be obtained from denoised cryo-EM images.
引用
收藏
页码:2995 / 2999
页数:5
相关论文
共 22 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
[Anonymous], 2018, ARXIV
[3]   The conformational cycle of prestin underlies outer-hair cell electromotility [J].
Bavi, Navid ;
Clark, Michael David ;
Contreras, Gustavo F. ;
Shen, Rong ;
Reddy, Bharat G. ;
Milewski, Wieslawa ;
Perozo, Eduardo .
NATURE, 2021, 600 (7889) :553-+
[4]   Determination of signal-to-noise ratios and spectral SNRs in cryo-EM low-dose imaging of molecules [J].
Baxter, William T. ;
Grassucci, Robert A. ;
Gao, Haixiao ;
Frank, Joachim .
JOURNAL OF STRUCTURAL BIOLOGY, 2009, 166 (02) :126-132
[5]   Topaz-Denoise: general deep denoising models for cryoEM and cryoET [J].
Bepler, Tristan ;
Kelley, Kotaro ;
Noble, Alex J. ;
Berger, Bonnie .
NATURE COMMUNICATIONS, 2020, 11 (01)
[6]   Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs [J].
Bepler, Tristan ;
Morin, Andrew ;
Rapp, Micah ;
Brasch, Julia ;
Shapiro, Lawrence ;
Noble, Alex J. ;
Berger, Bonnie .
NATURE METHODS, 2019, 16 (11) :1153-+
[7]   Denoising and covariance estimation of single particle cryo-EM images [J].
Bhamre, Tejal ;
Zhang, Teng ;
Singer, Amit .
JOURNAL OF STRUCTURAL BIOLOGY, 2016, 195 (01) :72-81
[8]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[9]   CRYO-ELECTRON MICROSCOPY IMAGE DENOISING USING MULTI-FREQUENCY VECTOR DIFFUSION MAPS [J].
Fan, Yifeng ;
Zhao, Zhizhen .
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, :3463-3467
[10]  
Gu H., 2020, ARXIV