Dynamic object removal and dense mapping for accurate visual SLAM in outdoor environments

被引:0
作者
Li, Gang [1 ]
Yu, Jian [1 ]
Huang, Huilan [2 ]
Zhu, Yongheng [3 ]
Cai, Jinxiang [1 ]
Luo, Hao [1 ]
Xu, Xiaoman [1 ]
Huang, Chen [1 ]
机构
[1] Guangxi Univ, Sch Elect Engn, Nanning 530004, Guangxi Zhuang, Peoples R China
[2] Guangxi Univ, Sch Mech Engn, Nanning 530004, Guangxi Zhuang, Peoples R China
[3] Guangxi Technol Coll Machinery & Elect, Sch Intelligent Welding Technol, Nanning 530007, Guangxi Zhuang, Peoples R China
关键词
Visual SLAM; Dynamic object removal; Dense mapping; Outdoor environments; ROBUST;
D O I
10.1016/j.measurement.2025.118172
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Visual SLAM systems face significant challenges in dynamic outdoor environments due to varying lighting conditions, the prevalence of moving objects, and distant small dynamic targets. To address these issues, we propose a stereo vision-based SLAM framework that integrates dynamic object removal and dense mapping. Potential dynamic features are identified using the moving consistency check module, and actual moving objects are eliminated via the dynamic region judgment module. The stereo camera configuration enables robust depth computation via an embedded stereo matching network, ensuring reliable metric scale estimation for dense mapping in autonomous navigation scenarios. Experimental validation on stereo-compatible datasets (KITTI, EuRoC, VIODE) demonstrates that our stereo vision-based method significantly improves trajectory accuracy in highly dynamic scenes, outperforming state-of-the-art approaches. On the 11 sequences of the KITTI dataset, our approach achieved an 11.16 % improvement in the Absolute Trajectory Error (ATE) metric compared to ORBSLAM3. In highly dynamic scenes, the improvement in ATE reached as high as 36.40 %. Our method improves localization accuracy by 14.9 %-47.4 % compared to other state-of-the-art methods in ATE under highly dynamic conditions. Additionally, high-quality dense point cloud maps are generated, laying a solid foundation for advanced robotic applications.
引用
收藏
页数:18
相关论文
共 44 条
[1]   DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes [J].
Bescos, Berta ;
Facil, Jose M. ;
Civera, Javier ;
Neira, Jose .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04) :4076-4083
[2]   The EuRoC micro aerial vehicle datasets [J].
Burri, Michael ;
Nikolic, Janosch ;
Gohl, Pascal ;
Schneider, Thomas ;
Rehder, Joern ;
Omari, Sammy ;
Achtelik, Markus W. ;
Siegwart, Roland .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (10) :1157-1163
[3]   ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM [J].
Campos, Carlos ;
Elvira, Richard ;
Gomez Rodriguez, Juan J. ;
Montiel, Jose M. M. ;
Tardos, Juan D. .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) :1874-1890
[4]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[5]   S2R-DepthNet: Learning a Generalizable Depth-specific Structural Representation [J].
Chen, Xiaotian ;
Wang, Yuwang ;
Chen, Xuejin ;
Zeng, Wenjun .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :3033-3042
[6]   Improving Dense Mapping for Mobile Robots in Dynamic Environments Based on Semantic Information [J].
Cheng, Jiyu ;
Wang, Chaoqun ;
Mai, Xiaochun ;
Min, Zhe ;
Meng, Max Q. -H. .
IEEE SENSORS JOURNAL, 2021, 21 (10) :11740-11747
[7]   Object Detection-Based Visual SLAM Optimization Method for Dynamic Scene [J].
Deng, Min ;
Hu, Jiwei ;
Wen, Junxiang ;
Zhang, Xiaomei ;
Jin, Qiwen .
IEEE SENSORS JOURNAL, 2025, 25 (09) :16480-16488
[8]  
Elvira R, 2019, IEEE INT C INT ROBOT, P6253, DOI [10.1109/iros40897.2019.8967572, 10.1109/IROS40897.2019.8967572]
[9]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237
[10]  
github.com, 2023, YOLOv8