Microfluidic Optimization of PEI-Lipid Hybrid Nanoparticles for Efficient DNA Delivery and Transgene Expression

被引:0
作者
Hosseini-Kharat, Mahboubeh [1 ]
Wignall, Anthony [1 ]
Mekonnen, Zelalem A. [2 ]
Ung, Ben S. -Y. [3 ]
Chereda, Bradley [4 ,5 ]
Bremmell, Kristen E. [1 ]
Grubor-Bauk, Branka [2 ]
Prestidge, Clive A. [1 ]
机构
[1] Univ South Australia, Ctr Pharmaceut Innovat, Clin & Hlth Sci, Adelaide, SA 5000, Australia
[2] Univ Adelaide, Basil Hetzel Inst Translat Hlth Res, Adelaide Med Sch, Viral Immunol Grp, Woodville South, SA 5011, Australia
[3] Univ South Australia, Qual Use Med & Pharm Res Ctr, City East Campus,Frome Rd, Adelaide, SA 5000, Australia
[4] Univ South Australia, Ctr Canc Biol, Adelaide, SA 5000, Australia
[5] SA Pathol, Adelaide, SA 5000, Australia
关键词
lipid nanoparticles (LNPs); polyethyleneimine (PEI); DNA delivery; microfluidic mixing; transgene expression; luciferase assays; GFP expression; lipid-polymer hybrid systems; gene therapy; GENE DELIVERY; LIPOPOLYPLEXES; POLYPLEXES;
D O I
10.3390/pharmaceutics17040454
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background: Lipid nanoparticles (LNPs) and polyethyleneimine (PEI) have independently been used for DNA complexation and delivery. However, non-ideal gene delivery efficiency and toxicity have hindered their clinical translation. We developed DNA-PEI-LNPs as a strategy to overcome these limitations and enhance DNA delivery and transgene expression. Methods: Three microfluidic mixing protocols were evaluated: (i) LNPs without PEI, (ii) a single-step process incorporating PEI in the organic phase, and (iii) a two-step process with DNA pre-complexed with PEI before LNP incorporation. The influence of DNA/PEI ratios (1:1, 1:2, 1:3) and DNA/lipid ratios (1:10, 1:40) on particle properties and delivery efficiency was examined. Results: In luciferase formulations, higher DNA/lipid ratios (1:40) produced smaller particles (136 nm vs. 188 nm) with improved cellular uptake (77% vs. 50%). The two-step method with higher DNA/PEI ratios improved transfection efficiency, with LNP-Luc/PEI 1:3 (40) achieving similar to 1.9 x 10(6) relative light units (RLU) in luciferase expression. In green fluorescent protein (GFP) studies, LNP-GFP/PEI 1:3 (40) showed similar to 23.8% GFP-positive cells, nearly twofold higher than LNP-GFP (40) at similar to 12.6%. Conclusions: These results demonstrate the capability of microfluidic-prepared DNA-PEI-LNPs to improve DNA delivery and transgene expression through optimized formulation strategies and selection of appropriate preparation methods.
引用
收藏
页数:16
相关论文
共 45 条
[1]   The Possible "Proton Sponge" Effect of Polyethylenimine (PEI) Does Not Include Change in Lysosomal pH [J].
Benjaminsen, Rikke V. ;
Mattebjerg, Maria A. ;
Henriksen, Jonas R. ;
Moghimi, S. Moein ;
Andresen, Thomas L. .
MOLECULAR THERAPY, 2013, 21 (01) :149-157
[2]   Polymer-supported lipid shells, onions, and flowers [J].
Bershteyn, Anna ;
Chaparro, Jose ;
Yau, Richard ;
Kim, Mikyung ;
Reinherz, Ellis ;
Ferreira-Moita, Luis ;
Irvine, Darrell J. .
SOFT MATTER, 2008, 4 (09) :1787-1791
[3]   Microfluidic Devices for Precision Nanoparticle Production [J].
Bezelya, Aysenur ;
Kucukturkmen, Berrin ;
Bozkir, Asuman .
MICRO-SWITZERLAND, 2023, 3 (04) :822-866
[4]   The great escape: how cationic polyplexes overcome the endosomal barrier [J].
Bus, Tanja ;
Traeger, Anja ;
Schubert, Ulrich S. .
JOURNAL OF MATERIALS CHEMISTRY B, 2018, 6 (43) :6904-6918
[5]   PAMAM versus PEI complexation for siRNA delivery: interaction with model lipid membranes and cellular uptake [J].
Chang, Patrick K. C. ;
Prestidge, Clive A. ;
Bremmell, Kristen E. .
PHARMACEUTICAL RESEARCH, 2022, 39 (06) :1151-1163
[6]   Structure-Based Evaluation of Hybrid Lipid-Polymer Nanoparticles: The Role of the Polymeric Guest [J].
Chountoulesi, Maria ;
Pippa, Natassa ;
Forys, Aleksander ;
Trzebicka, Barbara ;
Pispas, Stergios .
POLYMERS, 2024, 16 (02)
[7]   Efficient Delivery of DNA Using Lipid Nanoparticles [J].
Cui, Lishan ;
Renzi, Serena ;
Quagliarini, Erica ;
Digiacomo, Luca ;
Amenitsch, Heinz ;
Masuelli, Laura ;
Bei, Roberto ;
Ferri, Gianmarco ;
Cardarelli, Francesco ;
Wang, Junbiao ;
Amici, Augusto ;
Pozzi, Daniela ;
Marchini, Cristina ;
Caracciolo, Giulio .
PHARMACEUTICS, 2022, 14 (08)
[8]  
Dinh L, 2024, Applied Nano, V5, P143, DOI [10.3390/applnano5030011, 10.3390/applnano5030011, DOI 10.3390/APPLNANO5030011]
[9]   Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy [J].
Dogbey, Dennis Makafui ;
Torres, Valeria Esperanza Sandoval ;
Fajemisin, Emmanuel ;
Mpondo, Liyabona ;
Ngwenya, Takunda ;
Akinrinmade, Olusiji Alex ;
Perriman, Adam W. ;
Barth, Stefan .
DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2023, 13 (11) :2719-2738
[10]   Lipoplexes' Structure, Preparation, and Role in Managing Different Diseases [J].
El-Zahaby, Sally A. ;
Kaur, Lovepreet ;
Sharma, Ankur ;
Prasad, Aprameya Ganesh ;
Wani, Atif Khurshid ;
Singh, Rattandeep ;
Zakaria, Mohamed Y. .
AAPS PHARMSCITECH, 2024, 25 (05)