On the response of re-entrant auxetic structures under dynamic crushing: analytical approach and finite element simulations

被引:0
作者
Langlet, Andre [1 ]
Petit, Adeline [1 ]
Chaari, Fahmi [2 ]
Delille, Remi [2 ]
Drazetic, Pascal [2 ]
机构
[1] Univ Orleans, Univ Tours, INSA CVL, Lab Gabriel Lame, Bourges, France
[2] Univ Polytech Hauts France, LAMIH, Valenciennes, France
关键词
Re-entrant auxetic structure; shock; analytical solution; finite element; IMPACT; HONEYCOMBS; BEHAVIOR; FOAMS; BAR;
D O I
10.1080/13588265.2024.2434318
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work focuses on the dynamic compressive response of dynamically crushed auxetic structures. The aim is to propose a simplified methodology to assess the influence of geometrical/topological and material parameters on the impact response of these structures. The response also depends on the impact velocity. Based on an analogy with the propagation of shock waves in a rigid, perfectly plastic, locking (RPPL) material model, two approaches are developed to study the collapse of the structure crushed by a rigid impactor: (i) an analytical development and (ii) an iterative procedure, are proposed to evaluate the energy transfer and the impactor deceleration, thus allowing the physical quantities of interest to be deduced: dynamic stress, crushed length and strain, time for densification, stop time for the impactor. The methodology is presented and illustrated with the conventional 2D re-entrant auxetic, of which every range of geometrical data can be taken into account in the proposed formulas. Finite Element explicit simulations were carried out to confirm the analytical prediction. Results show good agreement between analytical and Finite Element results.
引用
收藏
页码:387 / 401
页数:15
相关论文
共 25 条
[1]   A review on crashworthiness studies of crash box structure [J].
Abdullah, N. A. Z. ;
Sani, M. S. M. ;
Salwani, M. S. ;
Husain, N. A. .
THIN-WALLED STRUCTURES, 2020, 153
[2]  
Ashby M.F., 2000, Metal Foams, P40, DOI [DOI 10.1016/B978-0-7506-7219-1.X5000-4, 10.1016/B978-075067219-1/50006-4, DOI 10.1016/B978-075067219-1/50006-4, 10.1016/B978-0-7506-7219-1.X5000-4]
[3]   Auxetic materials - A review [J].
Carneiro, V. H. ;
Meireles, J. ;
Puga, H. .
MATERIALS SCIENCE-POLAND, 2013, 31 (04) :561-571
[4]   Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb [J].
Dong, Zhichao ;
Li, Ying ;
Zhao, Tian ;
Wu, Wenwang ;
Xiao, Dengbao ;
Liang, Jun .
MATERIALS & DESIGN, 2019, 182
[5]   MOLECULAR NETWORK DESIGN [J].
EVANS, KE ;
NKANSAH, MA ;
HUTCHINSON, IJ ;
ROGERS, SC .
NATURE, 1991, 353 (6340) :124-124
[6]   Impact Testing of Polymer-filled Auxetics Using Split Hopkinson Pressure Bar [J].
Fila, Tomas ;
Zlamal, Petr ;
Jirousek, Ondrej ;
Falta, Jan ;
Koudelka, Petr ;
Kytyr, Daniel ;
Doktor, Tomas ;
Valach, Jaroslav .
ADVANCED ENGINEERING MATERIALS, 2017, 19 (10)
[7]  
Gibson L. J., 1997, CELLULAR SOLIDS STRU, DOI [DOI 10.1017/CBO9781139878326, 10.1017/CBO9781139878326]
[8]   THE MECHANICS OF TWO-DIMENSIONAL CELLULAR MATERIALS [J].
GIBSON, LJ ;
ASHBY, MF ;
SCHAJER, GS ;
ROBERTSON, CI .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 382 (1782) :25-42
[9]   The correct analysis of shocks in a cellular material [J].
Harrigan, J. J. ;
Reid, S. R. ;
Yaghoubi, A. Seyed .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2010, 37 (08) :918-927
[10]   Dynamic Crushing Strength Analysis of Auxetic Honeycombs [J].
Hou, Xiuhui ;
Deng, Zichen ;
Zhang, Kai .
ACTA MECHANICA SOLIDA SINICA, 2016, 29 (05) :490-501