Vibronic Trimer Design Enhancing Intramolecular Triplet-Exciton Hopping to Accelerate Triplet-Triplet Annihilation for Photon Upconversion

被引:1
作者
Higashi, Kousuke [1 ]
Okamoto, Tsubasa [1 ,2 ,10 ,11 ]
Iwaya, Nanami [3 ]
Sakuda, Eri [4 ]
Kay, Christopher W. M. [5 ,6 ]
Ikoma, Tadaaki [3 ,7 ]
Higashi, Masahiro [8 ]
Kobori, Yasuhiro [1 ,2 ,9 ]
机构
[1] Kobe Univ, Grad Sch Sci, Dept Chem, 1-1 Rokkodai Cho,Nada Ku, Kobe 6578501, Japan
[2] Kobe Univ, Mol Photosci Res Ctr, 1-1 Rokkodai Cho,Nada Ku, Kobe 6578501, Japan
[3] Niigata Univ, Grad Sch Sci & Technol, Nishi Ku, Niigata 9502181, Japan
[4] Nagasaki Univ, Div Chem & Mat Sci, Integrated Sci & Technol, Bunkyo Machi, Nagasaki 8528521, Japan
[5] Saarland Univ, Phys Chem & Chem Educ, D-66123 Saarbrucken, Germany
[6] UCL, London Ctr Nanotechnol, 17-19 Gordon St, London WC1H 0AH, England
[7] Niigata Univ, Ctr Coordinat Res Facil, Nishi Ku, Niigata 9502181, Japan
[8] Nagoya Univ, Grad Sch Informat, Dept Complex Syst Sci, Furo Cho,Chikusa Ku, Nagoya 4648601, Japan
[9] JST, CREST, Honcho 4-1-8, Kawaguchi, Saitama 3320012, Japan
[10] Univ Tsukuba, Inst Pure & Appl Sci, Dept Mat Sci, 1-1-1 Tennodai, Tsukuba 3058573, Japan
[11] Univ Tsukuba, Res Ctr Organ Inorgan Quantum Spin Sci & Technol, 1-1-1 Tennodai, Tsukuba 3058573, Japan
关键词
Electron paramagnetic resonance; Intramolecular triplet-exciton hopping; Photon upconversion; Triplet-triplet annihilation; STATE; DYNAMICS; 9,10-DIPHENYLANTHRACENE; C-60; RED; TRI-9-ANTHRYLBORANE; NANOPARTICLES; NANOCAPSULES; LIQUIDS;
D O I
10.1002/anie.202503846
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photon upconversion via triplet-triplet annihilation (TTA-UC) is a well-known process that converts low-energy light into higher-energy light. This process has attracted attention for its potential in various fields, including light-emitting devices, power generation and medical applications. It is desirable to develop TTA-UC materials of TTA emitters with large TTA rate constants (kTTA). However, molecular design to accelerate the bimolecular rate constant of kTTA has not been considered. We present a strategy to manipulate kTTA by assembling multiple chromophores linked to a boron in a rotationally symmetric manner, causing asymmetric motions by a localized triplet exciton. We have studied tri(9-anthryl)borane, which consists of three anthracenes linked via boron, as a TTA emitter. Time-resolved luminescence measurements confirmed that kTTA is improved compared to the conventional TTA-UC system using DPA, an anthracene-based monomer. Time-resolved electron paramagnetic resonance measurements showed that the improvement in kTTA is due to fast intramolecular triplet exciton hopping coupled with vibrational motions in the trimer molecule, which extends the reactivity at the collision distance between the excitons through the pseudo-rotational motions. This molecular design that enhances TTA reactivity is expected to contribute to the future development of TTA-UC materials for sensing fluid environment.
引用
收藏
页数:9
相关论文
共 61 条
[1]   Determination of triplet quantum yields from triplet-triplet annihilation fluorescence [J].
Bachilo, SM ;
Weisman, RB .
JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (33) :7711-7714
[2]   ELECTRON-PARAMAGNETIC-RESONANCE LINESHAPE ANALYSIS OF THE PHOTOEXCITED TRIPLET-STATE OF C-60 IN FROZEN SOLUTION - EXCHANGE NARROWING AND DYNAMIC JAHN-TELLER EFFECT [J].
BENNATI, M ;
GRUPP, A ;
MEHRING, M .
JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (24) :9457-9464
[3]   Non-approximative Kinetics of Triplet-Triplet Annihilation at Room Temperature: Solvent Effects on Delayed Fluorescence [J].
Bjelland, Victoria M. ;
Nakashima, Harue ;
Hashimoto, Naoaki ;
Seo, Satoshi ;
Melo, Thor B. ;
Lindgren, Mikael .
CHEMPHOTOCHEM, 2023, 7 (09)
[4]   Spin Statistics for Triplet-Triplet Annihilation Upconversion: Exchange Coupling, Intermolecular Orientation, and Reverse Intersystem Crossing [J].
Bossanyi, David G. ;
Sasaki, Yoichi ;
Wang, Shuangqing ;
Chekulaev, Dimitri ;
Kimizuka, Nobuo ;
Yanai, Nobuhiro ;
Clark, Jenny .
JACS AU, 2021, 1 (12) :2188-2201
[5]   MLCT sensitizers in photochemical upconversion: past, present, and potential future directions [J].
Castellano, Felix N. ;
McCusker, Catherine E. .
DALTON TRANSACTIONS, 2015, 44 (41) :17906-17910
[6]   Time resolved EPR of excited triplet C60 aligned in nematic liquid crystal [J].
Ceola, S ;
Franco, L ;
Corvaja, C .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (27) :9491-9497
[7]   TRIPLET-RELATED PHOTOPHYSICS OF 9,10-DIPHENYLANTHRACENE - A KINETIC-STUDY OF REVERSIBLE ENERGY-TRANSFER FROM ANTHRACENE TRIPLET BY NANOSECOND LASER FLASH-PHOTOLYSIS [J].
CHATTOPADHYAY, SK ;
KUMAR, CV ;
DAS, PK .
CHEMICAL PHYSICS LETTERS, 1983, 98 (03) :250-254
[8]   Kinetic Analysis of Photochemical Upconversion by Triplet-Triplet Annihilation: Beyond Any Spin Statistical Limit [J].
Cheng, Yuen Yap ;
Fueckel, Burkhard ;
Khoury, Tony ;
Clady, Raphael G. C. R. ;
Tayebjee, Murad J. Y. ;
Ekins-Daukes, N. J. ;
Crossley, Maxwell J. ;
Schmidt, Timothy W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (12) :1795-1799
[9]   Dependence of electron paramagnetic resonance spectral lineshapes on molecular tumbling: Nitroxide radical in water: glycerol mixtures [J].
Clark, Ashley ;
Sedhom, Jessica ;
Elajaili, Hanan ;
Eaton, Gareth R. ;
Eaton, Sandra S. .
CONCEPTS IN MAGNETIC RESONANCE PART A, 2016, 45A (05)
[10]   Annihilation Limit of a Visible-to-UV Photon Upconversion Composition Ascertained from Transient Absorption Kinetics [J].
Deng, Fan ;
Blumhoff, Joerg ;
Castellano, Felix N. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (21) :4412-4419