Second harmonic generation in the GaAs photonic crystal line defect nonlinear waveguide

被引:0
作者
Gong, Min [1 ,2 ]
Lin, Zhongxi [1 ]
Qiu, WeiBin [3 ,4 ]
Su, Hui [1 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, Collaborat Innovat Ctr Optoelect Semicond & Effici, Key Lab Optoelect Mat Chem & Phys, Fuzhou 350002, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[3] Huaqiao Univ, Coll Informat Sci & Engn, Xiamen 361021, Peoples R China
[4] Fujian Sci & Technol Innovat Lab Optoelect Informa, Fuzhou 350108, Peoples R China
[5] Fujian ZK Litecore Co Ltd, Fuzhou 350003, Peoples R China
关键词
photonic crystal; second harmonic generation; phase matching; gallium arsenide; 1.55; MU-M; SLOW-LIGHT; SILICON; INSB; GAP; INP;
D O I
10.1088/1402-4896/add7a2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Phase matching is an important factor that affects the efficiency of nonlinear conversion. A phase matching scheme based on photonic crystal structure is proposed in this paper and the phase matching of photonic crystal was analyzed theoretically. To verify this scheme, we designed a GaAs photonic crystal line defect nonlinear waveguide. By optimizing the line defect width, the phase matching condition was successfully achieved at 288.76 THz. Furthermore, the finite element method was employed to simulate the propagation of electromagnetic wave in the device. The calculated results indicate that the nonlinear conversion efficiency of the nonlinear waveguide device reaches 43,107% (W-1cm-2), with a coherence length exceeding 103 mu m. The proposed photonic crystal structure enhances the nonlinear conversion efficiency significantly, which offers a novel approach for realizing phase matching and designing nonlinear optical devices. In addition, this scheme can also be applied to other nonlinear materials.
引用
收藏
页数:11
相关论文
共 45 条
[2]   INTERACTIONS BETWEEN LIGHT WAVES IN A NONLINEAR DIELECTRIC [J].
ARMSTRONG, JA ;
BLOEMBERGEN, N ;
DUCUING, J ;
PERSHAN, PS .
PHYSICAL REVIEW, 1962, 127 (06) :1918-+
[3]   Second-harmonic generation in GaAs:: Experiment versus theoretical predictions of χxyz(2) -: art. no. 036801 [J].
Bergfeld, S ;
Daum, W .
PHYSICAL REVIEW LETTERS, 2003, 90 (03) :4
[4]   All-angle phase matching condition and backward second-harmonic localization in nonlinear photonic crystals [J].
Centeno, Emmanuel ;
Felbacq, Didier ;
Cassagne, David .
PHYSICAL REVIEW LETTERS, 2007, 98 (26)
[5]   Dispersive properties of finite, one-dimensional photonic band gap structures: Applications to nonlinear quadratic interactions [J].
Centini, M ;
Sibilia, C ;
Scalora, M ;
D'Aguanno, G ;
Bertolotti, M ;
Bloemer, MJ ;
Bowden, CM ;
Nefedov, I .
PHYSICAL REVIEW E, 1999, 60 (04) :4891-4898
[6]   Microcavity induced by a few-layer GaSe crystal on a silicon photonic crystal waveguide for efficient optical frequency conversion [J].
Chen, Xiaoqing ;
Zhang, Yanyan ;
Ji, Yingke ;
Zhang, Yu ;
Wang, Jianguo ;
Wu, Xianghu ;
Zhao, Chenyang ;
Fang, Liang ;
Jiang, Biqiang ;
Zhao, Jianlin ;
Gan, Xuetao .
OPTICS LETTERS, 2024, 49 (13) :3572-3575
[7]   Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides [J].
Corcoran, B. ;
Monat, C. ;
Grillet, C. ;
Moss, D. J. ;
Eggleton, B. J. ;
White, T. P. ;
O'Faolain, L. ;
Krauss, T. F. .
NATURE PHOTONICS, 2009, 3 (04) :206-210
[8]   Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides [J].
Ducci, S ;
Lanco, L ;
Berger, V ;
De Rossi, A ;
Ortiz, V ;
Calligaro, M .
APPLIED PHYSICS LETTERS, 2004, 84 (16) :2974-2976
[9]   Second harmonic generation in AlGaAs photonic wires using low power continuous wave light [J].
Duchesne, D. ;
Rutkowska, K. A. ;
Volatier, M. ;
Legare, F. ;
Delprat, S. ;
Chaker, M. ;
Modotto, D. ;
Locatelli, A. ;
De Angelis, C. ;
Sorel, M. ;
Christodoulides, D. N. ;
Salamo, G. ;
Ares, R. ;
Aimez, V. ;
Morandotti, R. .
OPTICS EXPRESS, 2011, 19 (13) :12408-12417
[10]   QUASI-PHASE-MATCHED 2ND HARMONIC-GENERATION - TUNING AND TOLERANCES [J].
FEJER, MM ;
MAGEL, GA ;
JUNDT, DH ;
BYER, RL .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (11) :2631-2654