Dynamic Compensation of Quasi-static Magnetic Field for Array Optically Pumped Magnetometers

被引:0
作者
Niu Yaqiong [1 ]
Cheng Longsheng [1 ]
Chen Sitong [1 ]
Wei Yutong [1 ]
Ye Chaofeng [1 ]
机构
[1] Shanghaitech Univ, Shanghai, Peoples R China
来源
2024 IEEE SENSORS | 2024年
关键词
dynamic magnetic field compensation; spin-exchange relaxation-free (SERF); optically pumped magnetometer; array sensors; PERFORMANCE;
D O I
10.1109/SENSORS60989.2024.10784860
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The technology of optically pumped magnetometers (OPM) operating in the spin exchange relaxation free (SERF) range has rapidly advanced in recent years. To operate in the SERF state, it is crucial to maintain a near zero magnetic field operating condition. Therefore, dynamic compensation of the magnetic field fluctuation is desired. This paper presents a method of suppression the magnetic field fluctuations by utilizing array OPMs that are oriented to different directions. The outputs of the sensors are split into different channels, namely: one channel for the alternating signal measurement and the other one for the closed-loop control to cancel the quasi-static magnetic field with frequency lower than 1.5 Hz. To mitigate the effects of coil non-uniformity and magnetic field inhomogeneity, two coils are employed to generate the compensation field, including the internal Helmholtz coil within the sensor and external tri-axial coils. Experimental results show that this method can suppress the quasi-static magnetic field fluctuations in-situ by over a hundredfold and achieve a magnetic field suppression level of approximately 300 fT/root Hz.
引用
收藏
页数:4
相关论文
共 15 条
[1]   A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers [J].
Boto, Elena ;
Meyer, Sofie S. ;
Shah, Vishal ;
Alem, Orang ;
Knappe, Svenja ;
Kruger, Peter ;
Fromhold, T. Mark ;
Lim, Mark ;
Glover, Paul M. ;
Morris, Peter G. ;
Bowtell, Richard ;
Barnes, Gareth R. ;
Brookes, Matthew J. .
NEUROIMAGE, 2017, 149 :404-414
[2]   A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography [J].
Holmes, Niall ;
Leggett, James ;
Boto, Elena ;
Roberts, Gillian ;
Hill, Ryan M. ;
Tierney, Tim M. ;
Shah, Vishal ;
Barnes, Gareth R. ;
Brookes, Matthew J. ;
Bowtell, Richard .
NEUROIMAGE, 2018, 181 :760-774
[3]   Measuring MEG closer to the brain: Performance of on-scalp sensor arrays [J].
Iivanainen, Joonas ;
Stenroos, Matti ;
Parkkonen, Lauri .
NEUROIMAGE, 2017, 147 :542-553
[4]   Compensation System for Biomagnetic Measurements with Optically Pumped Magnetometers inside a Magnetically Shielded Room [J].
Jodko-Wladzinska, Anna ;
Wildner, Krzysztof ;
Palko, Tadeusz ;
Wladzinski, Michal .
SENSORS, 2020, 20 (16) :1-14
[5]   A subfemtotesla multichannel atomic magnetometer [J].
Kominis, IK ;
Kornack, TW ;
Allred, JC ;
Romalis, MV .
NATURE, 2003, 422 (6932) :596-599
[6]   A low-noise ferrite magnetic shield [J].
Kornack, T. W. ;
Smullin, S. J. ;
Lee, S.-K. ;
Romalis, M. V. .
APPLIED PHYSICS LETTERS, 2007, 90 (22)
[7]  
Marhl U., IFMBE P, V80
[8]   A conformal array of microfabricated optically-pumped first-order gradiometers for magnetoencephalography [J].
Nardelli, N. V. ;
Perry, A. R. ;
Krzyzewski, S. P. ;
Knappe, S. A. .
EPJ QUANTUM TECHNOLOGY, 2020, 7 (01)
[9]   Reducing crosstalk in optically-pumped magnetometer arrays [J].
Nardelli, N., V ;
Krzyzewski, S. P. ;
Knappe, S. A. .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (21)
[10]   Fully Integrated, Standalone Zero Field Optically Pumped Magnetometer for Biomagnetism [J].
Osborne, J. ;
Orton, J. ;
Alem, O. ;
Shah, V. .
STEEP DISPERSION ENGINEERING AND OPTO-ATOMIC PRECISION METROLOGY XI, 2018, 10548