Distributed generation (DG) within the electrical distribution network (DN) has witnessed significant expansion globally, attributed to both technological advancements and environmental benefits. However, uncoordinated integration of DG in suboptimal locations can negatively influence the operational efficacy through issues such as increased power losses, voltage fluctuations, and protection coordination issues of the DN. Consequently, the optimal allocation of DG represents a critical element of consideration. Furthermore, the integration of network reconfiguration (NR) alongside DG units has the potential to significantly enhance system performance with only the existing infrastructure. Therefore, this work focuses on improving DN performance with optimal DG integration along with NR. The considered objectives are minimization of active power loss (APL) and cost of annual energy loss (CAEL). CAEL minimization by DG allocation and NR under multiple load models is addressed for the first time in this study. The efficacy of the employed hiking optimization algorithm (HOA) is illustrated through its application to the IEEE 33-Bus DN under various scenarios of DG operational power factors (PFs). A comparative analysis between the HOA and other reported methodologies is presented. Additionally, the results obtained for CAEL in case 6 (DG allocation with NR) are approximately 22.3% better that the best reported results of CAEL without NR, thereby affirming the usefulness of integrating the NR during DG allocation.