Collapsing immortal Kähler-Ricci flows

被引:0
作者
Hein, Hans-Joachim [1 ]
Lee, Man-Chun [2 ]
Tosatti, Valentino [3 ]
机构
[1] Univ Munster, Math Inst, Einsteinstr 62, D-48149 Munster, Germany
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Lady Shaw Bldg, Hong Kong 999077, Peoples R China
[3] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
关键词
KAHLER-RICCI FLOW; SCALAR CURVATURE; METRICS; CONVERGENCE; MANIFOLDS; LIMITS;
D O I
10.1017/fmp.2025.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the K & auml;hler-Ricci flow on compact K & auml;hler manifolds with semiample canonical bundle and intermediate Kodaira dimension, and show that the flow collapses to a canonical metric on the base of the Iitaka fibration in the locally smooth topology and with bounded Ricci curvature away from the singular fibers. This follows from an asymptotic expansion for the evolving metrics, in the spirit of recent work of the first and third-named authors on collapsing Calabi-Yau metrics, and proves two conjectures of Song and Tian.
引用
收藏
页数:98
相关论文
共 47 条
[1]  
Campana F, 2016, ANN SCI ECOLE NORM S, V49, P971
[2]  
Cao J., 2023, J. Eur. Math. Soc, V25, P633
[3]  
Cascini P, 2006, Arxiv, DOI arXiv:math/0603064
[4]  
Chu J., 2023, Int. Math. Res. Not. IMRN, P4932
[5]  
Das O, 2024, Arxiv, DOI arXiv:2412.07650
[6]  
Das O, 2023, Arxiv, DOI arXiv:2306.00671
[7]   On the log abundance for compact Kahler threefolds [J].
Das, Omprokash ;
Ou, Wenhao .
MANUSCRIPTA MATHEMATICA, 2024, 173 (1-2) :341-404
[8]   DEGENERATE COMPLEX MONGE-AMPERE EQUATIONS OVER COMPACT KAHLER MANIFOLDS [J].
Demailly, Jean-Pierre ;
Pali, Nefton .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (03) :357-405
[9]  
Eyssidieux P., 2008, Int. Math. Res. Not. IMRN, P8
[10]   Convergence of Weak Kahler-Ricci Flows on Minimal Models of Positive Kodaira Dimension [J].
Eyssidieux, Phylippe ;
Guedj, Vincent ;
Zeriahi, Ahmed .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 357 (03) :1179-1214