Characterization of Diophantine Equations a plus y2 = z2, Pythagorean n-Tuples, and Algebraic Structures

被引:0
作者
Amato, Roberto [1 ]
机构
[1] Univ Messina, Dept Engn, C da di Dio, I-98166 Messina, Italy
关键词
algebraic structures; Diophantine equations; Pythagorean n-tuples; Pythagorean quadruples; Pythagorean triples;
D O I
10.1155/ijmm/5516311
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let N,Z, and Q be the sets of natural, integers, and rational numbers, respectively. Our objective, involving a predetermined positive integer a, is to study a characterization of Diophantine equations of the form a + y2 = z2. Building on this result, we aim to obtain a characterization for Pythagorean n-tuples. Furthermore, we seek to prove the existence of a commutative infinite monoid in the set of Diophantine equations a + y2 = z2 with elements in N. Additionally, we intend to establish a commutative infinite monoid with elements in N or Z on the set of Pythagorean quadruples. Moreover, in the set of Pythagorean quadruples, we aim to find a commutative infinite group with elements in Q or Z. To achieve these results, we prove the existence of some suitable binary operations.
引用
收藏
页数:19
相关论文
共 16 条
[1]  
Amato R., 2024, Integers, V24
[2]  
Amato R., 2023, Palestine Journal of Mathematics, V12, P524
[3]  
Amato R, 2021, INT J MATH COMPUT SC, V16, P143
[4]  
Amato R, 2017, JP J ALGEBR NUMBER T, V39, P221, DOI 10.17654/NT039020221
[5]  
Berggren B., 1934, Elementa, V17, P129
[6]  
Dickson L. E., 2005, History of the Theory of Numbers
[7]   Structure of Primitive Pythagorean Triples in Generating Trees [J].
Koszegyova, Lucia ;
Csokasi, Evelin ;
Hirjak, Juraj .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03) :2127-2141
[8]   On the Simple Divisibility Restrictions by Polynomial Equation an+bn=cn Itself in Fermat Last Theorem for Integer/Complex/Quaternion Triples [J].
Kristyan, Sandor .
INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
[9]  
Lenstra A.K., 1990, ALGORITHMS NUMBER TH
[10]  
Mordell L. J., 1969, Diophantine Equations