High Fire-Safety, Thinning Lithium Metal Anode for High-Energy-Density Lithium Metal Batteries

被引:1
作者
Han, Longfei [1 ,2 ,3 ,4 ]
Zhang, Mengdan [2 ,3 ,4 ]
Cao, Yukun [1 ]
Zhang, Xinru [1 ]
Liao, Can [5 ]
Cheng, Liying [1 ]
Gu, Qiang [1 ]
Kan, Yongchun [1 ]
Zhu, Jixin [1 ]
Hu, Yuan [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
[2] Shandong Univ Sci & Technol, State Key Lab Min Disaster Prevent & Control, Cofounded Shandong Prov, Qingdao 266590, Shandong, Peoples R China
[3] Shandong Univ Sci & Technol Qingdao, Minist Sci & Technol, Qingdao 266590, Shandong, Peoples R China
[4] Shandong Univ Sci & Technol, Coll Safety & Environm Engn, Qingdao 266590, Shandong, Peoples R China
[5] Fuzhou Univ, Coll Mat Sci & Engn, Fujian Engn Res Ctr, High Energy Batteries & New Energy Equipment & Sys, Fuzhou 350108, Fujian, Peoples R China
关键词
fire-safety; lithium anode; lithium metal batteries; thermal runaway; THERMAL-CONDUCTIVITY; ELECTROLYTE; ION; LI; FABRICATION; STABILITY; KINETICS;
D O I
10.1002/adfm.202504427
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium (Li) metal batteries have garnered significant attention due to their high energy density. However, the safety concerns associated with Li-metal batteries need to be addressed for their commercial viability. Most research has focused on the safety of separators and electrolytes, yet little emphasis is placed on the heat safety of lithium metal. In an out-of-control scenario, the combustion of lithium metal can release significantly more heat compared to other components. In this study, a highly safe composite Li metal anode is introduced fabricated by repeatedly rolling copper (Cu) powder and lithium metal. Electrochemical tests show that the Cu/Li anode can withstand up to 200 cycles, far surpassing the 50-cycle lifespan of conventional Li metal anodes. Safety test results indicate that the Li/Cu composite anode possesses self-extinguishing properties, significantly mitigating the safety risks associated with lithium metal batteries. Thermal runaway tests on the 1.0 Ah pouch cell demonstrate that the Li/Cu composite anode exhibits excellent safety characteristics, effectively inhibiting thermal runaway phenomena. The proposed straightforward, and high-safety Li/Cu composite anode can enhance the safety profile of lithium metal batteries and provide crucial technical support for their industrial application.
引用
收藏
页数:12
相关论文
共 41 条
[1]   Thermal conductivity of lithium, sodium and potassium in the liquid state [J].
Agazhanov, A. Sh ;
Abdullaev, R. N. ;
Samoshkin, D. A. ;
Stankus, S., V .
PHYSICS AND CHEMISTRY OF LIQUIDS, 2020, 58 (06) :760-768
[2]   Nickel-doped Li2MoO4 as a high-performance anode material for rechargeable lithium-ion batteries [J].
Cai, Yuting ;
Huang, Hao ;
Bai, Weiqi ;
Sun, Lixia ;
Song, Zhongcheng ;
Sun, Ziqi ;
Huo, Siqi ;
Song, Pingan .
JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (33) :21895-21904
[3]   Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries [J].
Chen, Guorong ;
An, Juan ;
Meng, Yiming ;
Yuan, Changzhou ;
Matthews, Bryan ;
Dou, Fei ;
Shi, Liyi ;
Zhou, Yongfeng ;
Song, Pingan ;
Wu, Gang ;
Zhang, Dengsong .
NANO ENERGY, 2019, 57 :157-165
[4]   Integrated Structure of Tin-Based Anodes Enhancing High Power Density and Long Cycle Life for Lithium Ion Batteries [J].
Chen, Lei ;
Weng, Yuehua ;
Meng, Yiming ;
Dou, Fei ;
An, Zhongxun ;
Song, Pingan ;
Chen, Guorong ;
Zhang, Dengsong .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (09) :9337-9347
[5]   Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces [J].
Chen, Rusong ;
Li, Qinghao ;
Yu, Xiqian ;
Chen, Liquan ;
Li, Hong .
CHEMICAL REVIEWS, 2020, 120 (14) :6820-6877
[6]   Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure [J].
Duffner, Fabian ;
Kronemeyer, Niklas ;
Tuebke, Jens ;
Leker, Jens ;
Winter, Martin ;
Schmuch, Richard .
NATURE ENERGY, 2021, 6 (02) :123-134
[7]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267
[8]   Non-flammable sandwich-structured TPU gel polymer electrolyte without flame retardant addition for high performance lithium ion batteries [J].
Han, Longfei ;
Liao, Can ;
Liu, Yongyu ;
Yu, Heng ;
Zhang, Shenghe ;
Zhu, Yulu ;
Li, Zhirui ;
Li, Xingjun ;
Kan, Yongchun ;
Hu, Yuan .
ENERGY STORAGE MATERIALS, 2022, 52 :562-572
[9]   Mapping internal temperatures during high-rate battery applications [J].
Heenan, T. M. M. ;
Mombrini, I. ;
Llewellyn, A. ;
Checchia, S. ;
Tan, C. ;
Johnson, M. J. ;
Jnawali, A. ;
Garbarino, G. ;
Jervis, R. ;
Brett, D. J. L. ;
Di Michiel, M. ;
Shearing, P. R. .
NATURE, 2023, 617 (7961) :507-+
[10]   Low-temperature fusion fabrication of Li-Cu alloy anode with in situ formed 3D framework of inert LiCux nanowires for excellent Li storage performance [J].
Jia, Weishang ;
Liu, Yuchi ;
Wang, Zihao ;
Qing, Fangzhu ;
Li, Jingze ;
Wang, Yi ;
Xiao, Ruijuan ;
Zhou, Aijun ;
Li, Guobao ;
Yu, Xiqian ;
Hu, Yong-Sheng ;
Li, Hong ;
Wang, Zhaoxiang ;
Huang, Xuejie ;
Chen, Liquan .
SCIENCE BULLETIN, 2020, 65 (22) :1907-1915