An optimal approximate solution of the I kind Fredholm singular integral equations

被引:0
作者
Shadimetov, Kh. M. [1 ,2 ]
Akhmedov, D. M. [1 ,3 ]
机构
[1] V I Romanovskiy Inst Math, 9 Univ str, Tashkent 100174, Uzbekistan
[2] Tashkent State Transport Univ, 1 Odilxojaev Str, Tashkent 100167, Uzbekistan
[3] Natl Univ Uzbekistan, 4 Univ St, Tashkent 100174, Uzbekistan
关键词
Sobolev space; an extremal function; the error functional; optimal quadrature formulas; Cauchy type singular integral; weight function; singular integral equation; OPTIMAL QUADRATURE-FORMULAS; CAUCHY TYPE; WEIGHT FUNCTION;
D O I
10.2298/FIL2430765S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the problem of profile and lattice profile in aerodynamics. The first kind of Fredholm singular integral equation solves this problem. The Cauchy-type singular integrals are solutions to the first kind of Fredholm singular integral equation. However, the antiderivative function of these singular integrals can only be found in some cases. To overcome this, we utilize the Sobolev method to create an optimal quadrature formula for Cauchy-type singular integrals. By doing so, we can approximately solve the Fredholm integral equation of type I with higher accuracy. We compare the exact and approximate solutions of the first kind Fredholm singular integral equation, utilizing both the Sobolev method and another approach.
引用
收藏
页码:10765 / 10796
页数:32
相关论文
共 37 条
[1]   Optimal quadrature formulas with derivatives for Cauchy type singular integrals [J].
Akhmedov, D. M. ;
Hayotov, A. R. ;
Shadimetov, Kh. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 317 :150-159
[2]  
Akhmedov D.M, 2021, AIP Conference Proceedings, V2365
[3]   Optimal quadrature formulas for approximate solution of the first kind singular integral equation with Cauchy kernel [J].
Akhmedov, Dilshod M. ;
Shadimetov, Kholmat M. .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2022, 67 (03) :633-651
[4]  
[Anonymous], 1977, Boundary problems
[5]  
Belotserkovskii S. M., 1985, NUMERICAL METHODS SI
[6]  
Blaga P, 2007, STUD U BABES-BOL MAT, V52, P21
[7]  
Boykov I.V., 2005, Approximate Methods for Calculating Singular and Hypersingular Integrals. Part one. Singular integrals
[8]   Approximate Methods for Solving Linear and Nonlinear Hypersingular Integral Equations [J].
Boykov, Ilya ;
Roudnev, Vladimir ;
Boykova, Alla .
AXIOMS, 2020, 9 (03)
[9]  
Capobianco M.R., 1996, P ICAOR CLUJ NAP JUL
[10]   Numerical evaluation of Cauchy principal value integrals based on local spline approximation operators [J].
Dagnino, C ;
Lamberti, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 76 (1-2) :231-238