GEOMETRIC INEQUALITIES AND RIGIDITY OF GRADIENT SHRINKING RICCI SOLITONS

被引:0
作者
Wu, Jia-Yong [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Shanghai 200444, Peoples R China
关键词
shrinking Ricci soliton; Schrodinger operator; Sobolev inequality; logarithmic Sobolev inequality; heat kernel; Faber-Krahn inequality; Nash inequality; Rozenblum-Cwikel-Lieb inequality; eigenvalue; half Weyl tensor; rigidity; SOBOLEV INEQUALITIES; COMPACTNESS THEOREM; HEAT-EQUATION; MANIFOLDS; CLASSIFICATION; 4-MANIFOLDS; CURVATURE; CONSTANTS; BOUNDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the Sobolev inequality, the logarithmic Sobolev inequality, the Schrodinger heat kernel upper bound, the Faber-Krahn inequality, the Nash inequality and the Rozenblum-Cwikel-Lieb inequality all equivalently exist on complete gradient shrinking Ricci solitons. We also obtain some integral gap theorems for compact shrinking Ricci solitons.
引用
收藏
页码:549 / 580
页数:32
相关论文
共 64 条
[1]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[2]  
BESSE A, 1987, EINSTEIN MANIFOLDS
[3]  
Cao H.D., 2011, GEOMETRY ANAL, V11, P227
[4]  
Cao H.-D., 2008, SURVEYS DIFFERENTIAL, V12, P47
[5]   ON BACH-FLAT GRADIENT SHRINKING RICCI SOLITONS [J].
Cao, Huai-Dong ;
Chen, Qiang .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (06) :1149-1169
[6]  
Cao HD, 2010, J DIFFER GEOM, V85, P175, DOI 10.4310/jdg/1287580963
[7]   The Weyl tensor of gradient Ricci solitons [J].
Cao, Xiaodong ;
Tran, Hung .
GEOMETRY & TOPOLOGY, 2016, 20 (01) :389-436
[8]  
Carrillo JA, 2009, COMMUN ANAL GEOM, V17, P721
[9]   Bochner-type Formulas for the Weyl Tensor on Four-dimensional Einstein Manifolds [J].
Catino, Giovanni ;
Mastrolia, Paolo .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (12) :3794-3823
[10]   Integral pinched shrinking Ricci solitons [J].
Catino, Giovanni .
ADVANCES IN MATHEMATICS, 2016, 303 :279-294