Generation of Structurally Realistic Retinal Fundus Images with Diffusion Models

被引:5
作者
Go, Sojung [1 ]
Ji, Younghoon [2 ]
Park, Sang Jun [1 ]
Lee, Soochahn [3 ]
机构
[1] Seoul Natl Univ, Dept Ophthalmol, Coll Med, Bundang Hosp, Seongnam, South Korea
[2] VUNO Inc, Seoul, South Korea
[3] Kookmin Univ, Sch Elect Engn, Seoul, South Korea
来源
2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW | 2024年
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/CVPRW63382.2024.00239
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new technique for generating retinal fundus images that have anatomically accurate vascular structures, using diffusion models. We generate artery/vein masks to create the vascular structure, which we then condition to produce retinal fundus images. The proposed method can generate high-quality images with more realistic vascular structures and can create a diverse range of images based on the strengths of the diffusion model. We present quantitative evaluations that demonstrate the performance improvement using our method for data augmentation on vessel segmentation and artery/vein classification. We also present Turing test results by clinical experts, showing that our generated images are difficult to distinguish with real images. We believe that our method can be applied to construct stand-alone datasets that are irrelevant of patient privacy.
引用
收藏
页码:2335 / 2344
页数:10
相关论文
共 35 条
[1]   A Two-Stage GAN for High-Resolution Retinal Image Generation and Segmentation [J].
Andreini, Paolo ;
Ciano, Giorgio ;
Bonechi, Simone ;
Graziani, Caterina ;
Lachi, Veronica ;
Mecocci, Alessandro ;
Sodi, Andrea ;
Scarselli, Franco ;
Bianchini, Monica .
ELECTRONICS, 2022, 11 (01)
[2]  
[Anonymous], 2019, MICCAI, DOI DOI 10.1007/978-3-030-32239-786
[3]   Robust Vessel Segmentation in Fundus Images [J].
Budai, A. ;
Bock, R. ;
Maier, A. ;
Hornegger, J. ;
Michelson, G. .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2013, 2013 (2013)
[4]   Retinal Vessel Segmentation Using Deep Learning: A Review [J].
Chen, Chunhui ;
Chuah, Joon Huang ;
Ali, Raza ;
Wang, Yizhou .
IEEE ACCESS, 2021, 9 :111985-112004
[5]   End-to-End Adversarial Retinal Image Synthesis [J].
Costa, Pedro ;
Galdran, Adrian ;
Meyer, Maria Ines ;
Niemeijer, Meindert ;
Abramoff, Michael ;
Mendonca, Ana Maria ;
Campilho, Aurelio .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (03) :781-791
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]  
Dhariwal P, 2021, ADV NEUR IN, V34
[8]   An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation [J].
Fraz, Muhammad Moazam ;
Remagnino, Paolo ;
Hoppe, Andreas ;
Uyyanonvara, Bunyarit ;
Rudnicka, Alicja R. ;
Owen, Christopher G. ;
Barman, Sarah A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (09) :2538-2548
[9]   Combined Deep Learning of Fundus Images and Fluorescein Angiography for Retinal Artery/Vein Classification [J].
Go, Sojung ;
Kim, Jooyoung ;
Noh, Kyoung Jin ;
Park, Sang Jun ;
Lee, Soochahn .
IEEE ACCESS, 2022, 10 :70688-70698
[10]  
Ho Jonathan., 2020, P 34 INT C NEURAL IN, P6840