A comprehensive overview of AI based methods for SoC estimation of Li-ion Batteries in EV

被引:1
作者
Baccouche, Ines [1 ]
Ben Amara, Najoua Essoukri [1 ]
机构
[1] Univ Sousse, LATIS Lab Adv Technol & Intelligent Syst, Ecole Natl Ingn Sousse, Sousse 4023, Tunisia
来源
2024 10TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES, CODIT 2024 | 2024年
关键词
Li-ion Battery; SoC estimation; AI-based techniques; CHARGE ESTIMATION; STATE;
D O I
10.1109/CoDIT62066.2024.10708464
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State of charge (SoC) estimation is a critical aspect of managing lithium-ion (Li-ion) batteries in electric vehicles (EVs). Various Artificial Intelligence (AI) techniques have been used to enhance SoC estimation accuracy, such as convolutional neural networks, recurrent neural networks, generative networks, and more. This article provides a thorough survey of AI-based models utilized for SoC estimation in Li-ion batteries, synthesizing findings from diverse studies. By comparing the performance of different models : classical Machine Learning, convolutional, recurrent and generative, insights into the effectiveness and limitations of various AI approaches are highlighted. The review aims to guide future research efforts toward developing robust and accurate SoC estimation methods crucial for optimizing EV battery management systems.
引用
收藏
页码:1885 / 1890
页数:6
相关论文
共 44 条
[1]   Creating a Robust SoC Estimation Algorithm Based on LSTM Units and Trained with Synthetic Data [J].
Azkue, Markel ;
Miguel, Eduardo ;
Martinez-Laserna, Egoitz ;
Oca, Laura ;
Iraola, Unai .
WORLD ELECTRIC VEHICLE JOURNAL, 2023, 14 (07)
[2]  
Baccouche I., 2020, 2020 IEEE 91st Vehicular Technology Conference (VTC2020Spring), P1
[3]   Li-ion battery modeling and characterization: An experimental overview on NMC battery [J].
Baccouche, Ines ;
Jemmali, Sabeur ;
Manai, Bilal ;
Nikolian, Alexandros ;
Omar, Noshin ;
Ben Amara, Najoua Essoukri .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (04) :3843-3859
[4]  
Baccouche I, 2015, 2015 IEEE 12TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD)
[5]  
Bockrath S, 2019, IEEE IND ELEC, P2507, DOI 10.1109/IECON.2019.8926815
[6]   Real-time range estimation in electric vehicles using fuzzy logic classifier [J].
Ceven, Suleyman ;
Albayrak, Ahmet ;
Bayir, Raif .
COMPUTERS & ELECTRICAL ENGINEERING, 2020, 83
[7]   SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output [J].
Chen, Junxiong ;
Zhang, Yu ;
Wu, Ji ;
Cheng, Weisong ;
Zhu, Qiao .
ENERGY, 2023, 262
[8]   State of charge estimation for lithium-ion batteries using gated recurrent unit recurrent neural network and adaptive Kalman filter [J].
Chen, Junxiong ;
Zhang, Yu ;
Li, Wenjiang ;
Cheng, Weisong ;
Zhu, Qiao .
JOURNAL OF ENERGY STORAGE, 2022, 55
[9]   A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network [J].
Cui, Zhenhua ;
Wang, Licheng ;
Li, Qiang ;
Wang, Kai .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (05) :5423-5440
[10]  
Du JN, 2014, IEEE INT CONF CON AU, P1333, DOI 10.1109/ICCA.2014.6871117