On the small-time bilinear control of a nonlinear heat equation: Global approximate controllability and exact controllability to trajectories

被引:0
作者
Duca, Alessandro [1 ]
Pozzoli, Eugenio [2 ]
Urbani, Cristina [3 ]
机构
[1] Univ Lorraine, CNRS, INRIA, IECL, F-54000 Nancy, France
[2] Univ Rennes, CNRS, IRMAR, UMR 6625, F-35000 Rennes, France
[3] Univ Mercatorum, Dipartimento Ingn & Sci, Piazza Mattei 10, I-00186 Rome, Italy
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2025年 / 203卷
关键词
Bilinear control; Heat equation; Controllability; Moment problem; NAVIER-STOKES EQUATIONS; PARABOLIC-SYSTEMS; NULL CONTROLLABILITY; MINIMAL TIME; COST;
D O I
10.1016/j.matpur.2025.103758
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we analyse the small-time reachability properties of a nonlinear parabolic equation, by means of a bilinear control, posed on a torus of arbitrary dimension d. Under a saturation hypothesis on the control operators, we show the small-time approximate controllability between states sharing the same sign. Moreover, in the one-dimensional case d = 1, we combine this property with a local exact controllability result, and prove the small-time exact controllability of any positive states towards the ground state of the evolution operator. Dans ce travail, nous analysons les propri & eacute;t & eacute;s d'accessibilit & eacute; en temps court d'une & eacute;quation parabolique non lin & eacute;aire, & agrave; l'aide d'un contr & ocirc;le bilin & eacute;aire, pos & eacute;e sur un tore de dimension arbitraire d. Sous une hypoth & egrave;se de saturation sur les op & eacute;rateurs de contr & ocirc;le, nous montrons la contr & ocirc;labilit & eacute; approch & eacute;e en temps court entre les & eacute;tats qui ont le m & ecirc;me signe. De plus, dans le cas unidimensionnel d = 1, nous combinons cette propri & eacute;t & eacute; avec un r & eacute;sultat de contr & ocirc;labilit & eacute; locale exacte, et prouvons la contr & ocirc;labilit & eacute; exacte en temps court de tout & eacute;tat positif vers l'& eacute;tat fondamental de l'op & eacute;rateur d'& eacute;volution. (c) 2025 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:41
相关论文
共 43 条
[11]  
Benabdallah A, 2020, Annales Henri Lebesgue, V3, P717, DOI [10.5802/ahl.45, 10.5802/ahl.45]
[12]   SHARP ESTIMATES OF THE ONE-DIMENSIONAL BOUNDARY CONTROL COST FOR PARABOLIC SYSTEMS AND APPLICATION TO THE N-DIMENSIONAL BOUNDARY NULL CONTROLLABILITY IN CYLINDRICAL DOMAINS [J].
Benabdallah, Assia ;
Boyer, Franck ;
Gonzalez-Burgos, Manuel ;
Olive, Guillaume .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (05) :2970-3001
[13]   CONTROLLABILITY TO TRAJECTORIES FOR SOME PARABOLIC SYSTEMS OF THREE AND TWO EQUATIONS BY ONE CONTROL FORCE [J].
Benabdallah, Assia ;
Cristofol, Michel ;
Gaitan, Patricia ;
De Teresa, Luz .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2014, 4 (01) :17-44
[14]  
Bensoussan Alain., 2007, Representation and control of infinite dimensional systems
[15]   Analysis of non scalar control problems for parabolic systems by the block moment method [J].
Boyer, Franck ;
Morancey, Morgan .
COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) :1191-1248
[16]   EXACT CONTROLLABILITY TO EIGENSOLUTIONS OF THE BILINEAR HEAT EQUATION ON COMPACT NETWORKS [J].
Cannarsa, Piermarco ;
Duca, Alessandro ;
Urbani, Cristina .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (06) :1377-1401
[17]  
Cannarsa P, 2021, MINIMAX THEORY APPL, V6, P251
[18]   Multiplicative controllability for semilinear reaction-diffusion equations with finitely many changes of sign [J].
Cannarsa, Piermarco ;
Floridia, Giuseppe ;
Khapalov, Alexander Y. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (04) :425-458
[19]   Approximate multiplicative controllability for degenerate parabolic problems with Robin boundary conditions [J].
Cannarsa, Piermarco ;
Floridian, Giuseppe .
COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2011, 2 (02)
[20]   THE COST OF CONTROLLING WEAKLY DEGENERATE PARABOLIC EQUATIONS BY BOUNDARY CONTROLS [J].
Cannarsa, Piermarco ;
Martinez, Patrick ;
Vancostenoble, Judith .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2017, 7 (02) :171-211