On the small-time bilinear control of a nonlinear heat equation: Global approximate controllability and exact controllability to trajectories

被引:0
作者
Duca, Alessandro [1 ]
Pozzoli, Eugenio [2 ]
Urbani, Cristina [3 ]
机构
[1] Univ Lorraine, CNRS, INRIA, IECL, F-54000 Nancy, France
[2] Univ Rennes, CNRS, IRMAR, UMR 6625, F-35000 Rennes, France
[3] Univ Mercatorum, Dipartimento Ingn & Sci, Piazza Mattei 10, I-00186 Rome, Italy
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2025年 / 203卷
关键词
Bilinear control; Heat equation; Controllability; Moment problem; NAVIER-STOKES EQUATIONS; PARABOLIC-SYSTEMS; NULL CONTROLLABILITY; MINIMAL TIME; COST;
D O I
10.1016/j.matpur.2025.103758
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we analyse the small-time reachability properties of a nonlinear parabolic equation, by means of a bilinear control, posed on a torus of arbitrary dimension d. Under a saturation hypothesis on the control operators, we show the small-time approximate controllability between states sharing the same sign. Moreover, in the one-dimensional case d = 1, we combine this property with a local exact controllability result, and prove the small-time exact controllability of any positive states towards the ground state of the evolution operator. Dans ce travail, nous analysons les propri & eacute;t & eacute;s d'accessibilit & eacute; en temps court d'une & eacute;quation parabolique non lin & eacute;aire, & agrave; l'aide d'un contr & ocirc;le bilin & eacute;aire, pos & eacute;e sur un tore de dimension arbitraire d. Sous une hypoth & egrave;se de saturation sur les op & eacute;rateurs de contr & ocirc;le, nous montrons la contr & ocirc;labilit & eacute; approch & eacute;e en temps court entre les & eacute;tats qui ont le m & ecirc;me signe. De plus, dans le cas unidimensionnel d = 1, nous combinons cette propri & eacute;t & eacute; avec un r & eacute;sultat de contr & ocirc;labilit & eacute; locale exacte, et prouvons la contr & ocirc;labilit & eacute; exacte en temps court de tout & eacute;tat positif vers l'& eacute;tat fondamental de l'op & eacute;rateur d'& eacute;volution. (c) 2025 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:41
相关论文
共 43 条
[1]   Navier-Stokes equations: Controllability by means of low modes forcing [J].
Agrachev, AA ;
Sarychev, AV .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (01) :108-152
[2]  
Agrachev A, 2008, INT MAT SER, V6, P1
[3]   Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing [J].
Agrachev, Andrey A. ;
Sarychev, Andrey V. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (03) :673-697
[4]   Bilinear control of evolution equations with unbounded lower order terms. Application to the Fokker-Planck equation [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco ;
Urbani, Cristina .
COMPTES RENDUS MATHEMATIQUE, 2024, 362 :511-545
[5]   Exact controllability to eigensolutions for evolution equations of parabolic type via bilinear control [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco ;
Urbani, Cristina .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (04)
[6]   Superexponential stabilizability of evolution equations of parabolic type via bilinear control [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco ;
Urbani, Cristina .
JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (01) :941-967
[7]   Analysis of the null controllability of degenerate parabolic systems of Grushin type via the moments method [J].
Allonsius, Damien ;
Boyer, Franck ;
Morancey, Morgan .
JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) :4799-4843
[8]   A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems [J].
Ammar-Khodja, Farid ;
Benabdallah, Assia ;
Dupaix, Cedric ;
Gonzalez-Burgos, Manuel .
JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (02) :267-291
[9]   CONTROLLABILITY FOR DISTRIBUTED BILINEAR-SYSTEMS [J].
BALL, JM ;
MARSDEN, JE ;
SLEMROD, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1982, 20 (04) :575-597
[10]   Unexpected quadratic behaviors for the small-time local null controllability of scalar-input parabolic equations [J].
Beauchard, Karine ;
Marbach, Frederic .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 136 :22-91